Answer:
NaHCO3 + HCl ——-> NaCl + H2O + CO2
Explanation:
A neutralization reaction is a chemical reaction between an alkali and an acid to give salt and water as the product.
In the case of carbonates and bicarbonates, an additional product is added. This additional product is carbon iv oxide.
Hence a neutralization reaction involving an acid and a carbonate or bicarbonate would yield water, carbon iv oxide and a salt as the product.
When brioschi reacts with hydrochloric acid, the products are sodium chloride, water and carbon iv oxide.
The equation of the reaction is shown below:
NaHCO3 + HCl ——> NaCl + H2O + CO2
Answer:
You may be referring to the gas that makes up 21% of the earth's atmosphere, which is oxygen.
Explanation:
According to NASA, the gases in Earth's atmosphere include:
Nitrogen — 78 percent
Oxygen — 21 percent
Argon — 0.93 percent
Carbon dioxide — 0.04 percent
(Trace amounts of neon, helium, methane, krypton and hydrogen, as well as water vapor)
(a) One form of the Clausius-Clapeyron equation is
ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂); where in this case:
Solving for ΔHv:
- ΔHv = R * ln(P₂/P₁) / (1/T₁ - 1/T₂)
- ΔHv = 8.31 J/molK * ln(5.3/1.3) / (1/358.96 - 1/392.46)
(b) <em>Normal boiling point means</em> that P = 1 atm = 101.325 kPa. We use the same formula, using the same values for P₁ and T₁, and replacing P₂ with atmosferic pressure, <u>solving for T₂</u>:
- ln(P₂/P₁) = (ΔHv/R) * (1/T₁ - 1/T₂)
- 1/T₂ = 1/T₁ - [ ln(P₂/P₁) / (ΔHv/R) ]
- 1/T₂ = 1/358.96 K - [ ln(101.325/1.3) / (49111.12/8.31) ]
(c)<em> The enthalpy of vaporization</em> was calculated in part (a), and it does not vary depending on temperature, meaning <u>that at the boiling point the enthalpy of vaporization ΔHv is still 49111.12 J/molK</u>.
600,000 mm if im not mistaken.
Answer:
Barium and sulpher are the elements that forms barium sulphide .
And its molecular fomula is BaS.
Explanation: