Answer:
1.06 V
Explanation:
The standard reduction potentials are:
Ag^+/Ag E° = 0.7996 V
Ni^2+/Ni E° = -0.257 V
The half-cell and cell reactions for Ni | Ni^2+ || Ag^+ | Ag are
Ni → Ni^2+ + 2e- E° = 0.257 V
<u>2Ag^+ 2e- → 2Ag </u> <u>E° = 0.7996 V
</u>
Ni + 2Ag^+ → Ni^2+ + 2Ag E° = 1.0566 V
To three significant figures, the standard potential for the cell is 1.06 V
.
Answer:
- <u><em>g) Neither plant should increase by 1 cm in height.</em></u>
Explanation:
See the graph for this question on the figure attached.
The growing of the <em>plant A</em> is represented by the line that goes above the other. At start, that line has a slope that rises about 0.75 cm ( height increase) in 1 day. From the day 2 and forward the slope of the line decreases. The line reaches its highest point about at day 4 and seems to start decreasing. Thus, you should predict that on the day six it <em>most likely </em>does not increase in height.
The growing of the <em>plant B</em> is represented by the line drawn below the other. As for the plant B, the growing decreases with the number of days. Between the days 4 and 5 the line is almost flat, which means that <em>most likely</em> this plant will not grow on the day six or grow less than 0.5 cm.
Thus, for both plants you can say that <em>on day six, most likley, neither should increase by 1 cm in height (</em>option g).
Answer:
The correct option is Methylene chloride
Explanation:
Methylene chloride or Dichloromethane has an organic formula of CH2CL2. it is commonly used as solvent, it is very volatile and dissolves many organic compounds including a mixture containing benzoic acid, 2,4-dinitrobenzoic acid, and 2,4,6-trinitrobenzoic acid. It is colorless, has a chloroform like odor and Miscible in ethyl acetate, alcohol, hexanes, benzene, CCl4, diethyl ether, CHCl3.
Answer:
Higher frequency
Explanation:
We can imagine a chemical bond between two atoms as if it were two balls connected by a spring.
According to Hooke's Law, the stretching frequency f is

where µ is the reduced mass of the system

The strength of the bond is analogous to k, the force constant of the spring. Then,

Thus, the stronger the bond, the greater the frequency of vibration.