Answer:
A.
Explanation:
A redox reaction is a reaction when oxidation states (or numbers) change during reaction.
Answer:
During cellular respiration animal cells combine oxygen with food molecules to release energy to live and function. Remember that cellular respiration produces carbon dioxide as a waste product. Animals use energy to grow, reproduce, and to function. They release the carbon dioxide into the air as a waste product
Explanation:
Answer:
8
Explanation:
1 mole = 6.02 × 10²³ atoms
? moles = 4.816 × 10²⁴ atoms.
? Moles = 4.816 × 10²⁴ ÷ 6.02 × 10²³
? Moles = 8 moles
8 moles of aluminum = 4.816 × 10²⁴
Answer:
'See Explanation
Explanation:
Determine the [OH−] , pH, and pOH of a solution with a [H+] of 9.5×10−13 M at 25 °C.
Given [H⁺] = 9.5 x 10⁻¹³M => [H⁺][OH⁻] = 1.0 x 10⁻¹⁴ => [OH⁻] = 1.0 x 10⁻¹⁴/9.5 x 10⁻¹³ = 0.0105M
pH = -log[H⁺] = -log(9.5 x 10⁻¹³) = - (-1202) = 12.02.
pOH = -log[OH⁻] = -log(0.0105) = -(-1.98) = 1.98
Now you use the same sequence in the remaining problems.
A because the end result of this reaction is a radical created by the oxidation of an aromatic amine's or phenol's ring substituent. The hydroxyl group of a phenol acts as the ring substituent in this situation.
<h3>Which two enzyme types are required for the two-step process of converting cytosine to 5 hmC?</h3>
- The methyl group is transferred to cytosine in the first stage, and it is then hydroxylated in the second step.
- Therefore, a transferase and an oxidoreductase are the two groups of enzymes required.
<h3>Which kind of interaction between proteins and the dextran column material is most likely to take place?</h3>
- Hydrogen bonding because the glucose's OH would form an H-bond with any exposed polar side chains on a protein surface.
<h3>Two out of the four proteins would adhere to a cation-exchange column at what buffer pH? </h3>
- Only positively charged proteins can bind to a cation-exchange column, and this can only happen when the pH is lower than the pI.
- Proteins A and B would both be positively charged at pH 7.0.
To learn more about hydroxyquinoline visit:
brainly.com/question/26102339
#SPJ4