Answer:
375 K
Explanation:
Using the experssion shown below as:

At vaporization point, the liquid and the gaseous phase is in the equilibrium.
Thus,

So,

Given that:

Also, 1 kJ = 10³ J
So,


So, temperature is :


<u>T= 375 K</u>
Answer:
The answer is 0.36 kg/s NO
Explanation:
the chemical reaction of NH3 to NO is as follows:
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
We have the following data:
O2 Volume rate = 645 L/s
P = 0.88 atm
T = 195°C + 273 = 468 K
NO molecular weight = 30.01 g/mol
we calculate the moles found in 645 L of O2:
P*V = n*R*T
n = P*V/R*T
n= (0.88 atm * 645L/s)/((0.08205 L*atm/K*mol) * 468 K) = 14.78 moles of O2
With the reaction we can calculate the number of moles of NO and with its molecular weight we will have the rate of NO:
14.78 moles/s O2 * 4 molesNO/5 molesO2 * 30.01 g NO/1 molNO x 1 kgNO/1000 gNO = 0.36 kg/s NO
Considering ideal gas behavior, the volume of 1 mol of gas at STP is 22.4 L; then the volume occupied by 1.9 moles is 1.9mol*22.4L/mol = 42. 6 L.
Answer: 43 L
Answer:
Life
Explanation:
With out him we wouldn't live
London dispersion
dipole-dipole