Answer:
a. +2
b. +3
c. -1
Explanation:
The typical oxidation states can be determined from the periodic table based on the number of valence electrons an atom has.
a. Calcium belongs to group 2A, meaning it has 2 valence electrons and, therefore, would have an oxidation state of +2 in compounds.
b. Aluminum is in group 3A, meaning it has 3 valence electrons and would have an oxidation state of +3 in compounds when the 3 electrons are lost.
c. Fluorine would become fluorine if it gained 1 additional electron to achieve an octet, so its oxidation state would be -1.
Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K

n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression

= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Answer:
Electronegativity in group 1 decreases as we go from Lithium to Francium.
Explanation:
Electronegativity is defined as the tendency of an element to attract an electron pair towards itself.
In a group generally this tendency decreases from top to bottom as the size of the atom increases and hence the positive nucleus get far from the outer orbital.
In the same way group 1 elements i.e. from Lithium to Francium electronegativity decreases.
Answer:
It reduces the need to import goods
Explanation:
When you buy locally, the products you buy don't come from far away, so they don't have to cross the country (or the ocean) by boat, plane or trucks to reach the market/store where you're buying, at least not from a long distance away.
The distance a vehicle travels, the less CO2 emissions it produces.
If the good you're buying is made/produced only an hour away, that's not much pollution produced compared as if the good has to come from a distant place spending days on highways to reach you.
Compounds are made up of elements that exist in a fixed proportion. These elements are composed of atoms. Now, the atom has subatomic particles (proton, neutron and electrons), however, these particles lack the ability to take part in chemical reactions by themselves; the smallest unit of a compound that can take part in a chemical reaction, therefore, is an ATOM.
Thus, an AT<span>OM is the smallest unit of a compound that retains the unique properties of the compound</span>