Answer:
Ion-ion force between Na+ and Cl− ions
London dispersion force between two hexane molecules
Explanation:
"Ion-dipole force between Na+ ions and a hexane molecule
" does not exist since hexane has only non-polar bonds and therefore no dipole.
"Ion-ion force between Na+ and Cl− ions
" exists since both are ions.
"Dipole-dipole force between two hexane molecules
" does not exist since hexane molecules do not have a dipole.
"Hydrogen bonding between Na+ ions and a hexane molecule
" does not exist since the hydrogen in the hydrogen bond must be bonded directly to an electronegative atom, which hexane does not have since it is a hydrocarbon.
"London dispersion force between two hexane molecules" exist since hexane is a molecular compound.
<span>This would be the activation energy. This is usually in the form of heat, which allows the reaction to undergo some sort of transition. Many times, enzymes can be used as catalysts to lower the activation energy required for the reaction to take place.</span>
Answer:
9.63 L.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

So the consumed amounts of hydrochloric acid and bromine are the same to the beginning based on:

In such a way, the yielded moles of hydrobromic acid and chlorine are:

Thus, the volume of the sample, after the reaction is the same as no change in the total moles is evidenced, that is 9.63L.
Best regards.
Answer:
yes it is ( From +3 to 0 )
Explanation:
If this is the balanced equation:
AlCl3 + 3Na ——> 3NaCl + Al
Al Cl 3Na Na Cl Al
+3 -3 0 +1 -1 0
Answer:
V = 0.798 L
Explanation:
Hello there!
In this case, for this gas stoichiometry problem, we first need to compute the moles of carbon dioxide via stoichiometry and the molar mass of starting calcium carbonate:

Next, we use the ideal gas equation for computing the volume, by bearing to mind that the STP conditions stand for a pressure of 1 atm and a temperature of 273.15 K:

Best regards!