To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g
Given what we know, we can confirm that in a voltaic cell, the anode loses electrons and is oxidized, meanwhile, the cathode is reduced by gaining electrons.
<h3 /><h3>What is a voltaic cell?</h3>
- It is described as an electrochemical cell.
- These cells use chemical reactions to produce electrical energy.
- During this reaction, an anode loses electrons, thus oxidizing.
- Meanwhile, the cathode gains electrons and is reduced.
Therefore, given the nature of the voltaic cell, we can confirm that during its reaction, the anode is oxidized by losing electrons while the cathode becomes reduced by gaining them.
To learn more about electrical energy visit:
brainly.com/question/863273?referrer=searchResults