Answer:
(a) 
(b)
Explanation:
It is given that,
Force acting on the particle, F = 12 N
Displacement of the particle, 
Magnitude of displacement, 
(a) If the change in the kinetic energy of the particle is +30 J. The work done by the particle is given by :

is the angle between force and the displacement
According to work energy theorem, the charge in kinetic energy of the particle is equal to the work done.
So,



(b) If the change in the kinetic energy of the particle is (-30) J. The work done by the particle is given by :


Hence, this is the required solution.
The rate constant of a reaction can be computed by the ratio of the changes in the concentration and time take taken for it to decompose. Thus, if the rate constant is given to be 14 M/s, we have

where C are the concentration values and t is the time taken for it to decompose.


Thus, it will take 0.003 s for it to decompose.
Answer: 0.003 s
Answer:
The acceleration of the proton is 9.353 x 10⁸ m/s²
Explanation:
Given;
speed of the proton, u = 6.5 m/s
magnetic field strength, B = 1.5 T
The force of the proton is given by;
F = ma = qvB(sin90°)
ma = qvB
where;
m is mass of the proton, = 1.67 x 10⁻²⁷ kg
charge of the proton, q = 1.602 x 10⁻¹⁹ C
The acceleration of the proton is given by;

Therefore, the acceleration of the proton is 9.353 x 10⁸ m/s²
Answer: Option (B)
Explanation: A stream transports its materials in different ways-
- <u>Dissolved load-</u> Here, the materials gets dissolved when mixed with water and flows along with the stream.
- <u>Suspended load</u>- Here, the materials are not fully dissolved in the water but they can be carried from one place to another in suspension mode, by the river.
- <u>Bed load-</u> Bed load are transported in three different ways such as-
- Sliding- here, the materials slides down along a curved surface under the water and carried away.
- Rolling- here, the materials are solid and due to force exerted by water, it can roll and move to distant places.
- Saltation- here, the materials are carried away in a series of jumps.
Thus, the most appropriate answer is option (B) i.e bedload.