Answer:
The statement is true: velocity and acceleration have opposite directions in the interval of braking.
Explanation:
Let's say we have a velocity
.
The acceleration
is the rate of change of the velocity
. This means that if
is <em>increasing during</em> time, then
must be positive. But if
is <em>decreasing over</em> time, then
will be negative (even though the velocity is positive).
Mathematically:

decreases ⇒
⇒
.
Example:

Answer:
Explanation:
We shall apply law of refraction which is as follows
sin i / sinr = μ , where i is angle of incidence , r is angle of refraction and μ is refractive index
here i = θa = 22.5°
r = θb
μ = 1.77
sin22.5 / sinθb = 1.77
.3826 / sinθb = 1.77
sinθb = .216
θb = 12.5 °.
To solve this, you’d multiply 55 by 4, because he is travelling 55 miles every hour, for four hours, which means 55 miles every hour. The answer would be 220.
The only thing we know of so far that can shift light to longer wavelengths is the "Doppler" effect. If the source and the observer are moving apart, then the observer sees wavelengths that are longer than they should be. If the source and the observer are moving toward each other, then the observer sees wavelengths that are shorter than they should be. It works for ANY wave ... sound, light, water etc. The trick is to know what the wavelength SHOULD be. If you know that, then you can tell whether you and the source are moving together or apart, and you can even tell how fast. If the lines in a star"s spectrum are at wavelengths that are too long, then from everything we know right now, the star and Earth are moving apart.