Here we can say that rate of flow must be constant
so here we will have

now we know that


now from above equation



so velocity will reduce by factor 0.14
Answer:
Explanation:
Given that:
width b=100mm
depth h=150 mm
length L=2 m =200mm
point load P =500 N
Calculate moment of inertia

Point C is subjected to bending moment
Calculate the bending moment of point C
M = P x 1.5
= 500 x 1.5
= 750 N.m
M = 750 × 10³ N.mm
Calculate bending stress at point C

Calculate the first moment of area below point C

Now calculate shear stress at point C


Calculate the principal stress at point C
![\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2} \pm\sqrt{(\frac{\sigma_x-\sigma_y}{2} ) + (\tau)^2} \\\\=\frac{666.67+0}{2} \pm\sqrt{(\frac{666.67-0}{2} )^2 \pm(44.44)^2} \ [ \sigma_y=0]\\\\=333.33\pm336.28\\\\ \sigma_1=333.33+336.28\\=669.61KPa\\\\\sigma_2=333.33-336.28\\=-2.95KPa](https://tex.z-dn.net/?f=%5Csigma_%7B1%2C2%7D%3D%5Cfrac%7B%5Csigma_x%2B%5Csigma_y%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B%5Csigma_x-%5Csigma_y%7D%7B2%7D%20%29%20%2B%20%28%5Ctau%29%5E2%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B666.67%2B0%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B666.67-0%7D%7B2%7D%20%29%5E2%20%5Cpm%2844.44%29%5E2%7D%20%5C%20%5B%20%5Csigma_y%3D0%5D%5C%5C%5C%5C%3D333.33%5Cpm336.28%5C%5C%5C%5C%20%5Csigma_1%3D333.33%2B336.28%5C%5C%3D669.61KPa%5C%5C%5C%5C%5Csigma_2%3D333.33-336.28%5C%5C%3D-2.95KPa)
Calculate the maximum shear stress at piont C

The coefficient of static friction is 0.234.
Answer:
Explanation:
Frictional force is equal to the product of coefficient of friction and normal force acting on any object.
So here the mass of the object is given as 2 kg, so the normal force will be acting under the influence of acceleration due to gravity.
Normal force = mass * acceleration due to gravity
Normal force = 2 * 9.8 = 19.6 N.
And the frictional force is given as 4.6 N, then

Coefficient of static friction = 4.6 N / 19.6 N = 0.234
So the coefficient of static friction is 0.234.
Answer:
W = 0
Explanation:
We are given with, a construction worker is carrying a load of 40 kg over his head and is walking at a constant velocity. He travels a distance of 50 m.
The work done by an object is given by :

F = ma
So,

m is mass
a is acceleration
d is displacement
The worker is moving with constant velocity, its acceleration will be 0. So, the work done by the worker is 0.
Answer:
B. The elasticity of demand is -0.126
Explanation:
% Change in Quality demand = -2.65% (negative because of drop)
% Change in price = 21%
Elasticity of demand is given by

The Elasticity of demand is -0.12619