Answer:
An Ocean beach
Explanation:
a Ocean beach is far heavier than the top of a mountain, despite that a mountain is made with many heavy rocks a Ocean beach may have light sand but the layers of sand and the width would be way heavier then the top of a mountain.
Answer:
see explanation
Explanation:
You are missing the chart with the rates and time to do this, however, I wll do it with a similar exercise here, and you only need to replace the procedure with your data:
See the attached table.
From the left we have:
r = 1/2 (50 + 48 + 46 + 44 + 42 + 40) = 135 L/min
From the right we have:
r = 1/2 (48 + 46 +44 + 42 + 40 + 38) = 129 L/min.
And this should be the correct answer. Watch your chart and replace if it's neccesary.
Correct ones are
- Technical improvements that have made alternative energy sources more practical to use
- Increase in concern for environment.
why?
Fossil fuels are hydrocarbons
- Hydrocarbons on burning with oxygen releases harmful carbon dioxide .
Answer:
a. 
b. 
Explanation:
I have attached an illustration of a solid disk with the respective forces applied, as stated in this question.
Forces applied to the solid disk include:

Other parameters given include:
Mass of solid disk, 
and radius of solid disk, 
a.) The formula for determining torque (
), is 
Hence the net torque produced by the two forces is given as a summation of both forces:

b.) The angular acceleration of the disk can be found thus:
using the formula for the Moment of Inertia of a solid disk;

where
= Mass of solid disk
and
= radius of solid disk
We then relate the torque and angular acceleration (
) with the formula:

Answer:
C) upward
Explanation:
The problem can be solved by using the right-hand rule.
First of all, we notice at the location of the negatively charged particle (above the wire), the magnetic field produced by the wire points out of the page (because the current is to the right, so by using the right hand, putting the thumb to the right (as the current) and wrapping the other fingers around it, we see that the direction of the field above the wire is out of the page).
Now we can apply the right hand rule to the charged particle:
- index finger: velocity of the particle, to the right
- middle finger: direction of the magnetic field, out of the page
- thumb: direction of the force, downward --> however, the charge is negative, so we must reverse the direction --> upward
Therefore, the direction of the magnetic force is upward.