Answer:
The right option is C. i.e L
Explanation:
Dimension of a quantity is the collection of the indexes of each of the fundamental quantities contained in it.
Therefore, to get the dimension of A in the equation
X=Asin(2(pi)ft)
Making A the subject of the formula
A = X / (sin(2(pi)ft)
Since sin(2(pi)ft which is a trigonometric function does not have a dimension
A = L
The dimension of A is L
Answer:
power=400Watt
Explanation:
work done =12kJ=12×10³=12000j
time taken=30s
power=?
as we know that
power=work done/time taken
power=12000J/30s
power=400Watt
i hope this will help you :)
D. 18 miles driven in a week
Answer:
The pressure on the ground is about 9779.5 Pascal.
The pressure can be reduced by distributing the weight over a larger area using, for example, a thin plate with an area larger than the circular area of the barrel's bottom side. See more details further below.
Explanation:
Start with the formula for pressure
(pressure P) = (Force F) / (Area A)
In order to determine the pressure the barrel exerts on the floor area, we need the calculate the its weight first

where m is the mass of the barrel and g the gravitational acceleration. We can estimate this mass using the volume of a cylinder with radius 30 cm and height 1m, the density of the water, and the assumption that the container mass is negligible:

The density of water is 997 kg/m^3, so the mass of the barrel is:

and so the weight is

and so the pressure is

This answers the first part of the question.
The second part of the question asks for ways to reduce the above pressure without changing the amount of water. Since the pressure is directly proportional to the weight (determined by the water) and indirectly proportional to the area, changing the area offers itself here. Specifically, we could insert a thin plate (of negligible additional weight) to spread the weight of the barrel over a larger area. Alternatively, the barrel could be reshaped (if this is allowed) into one with a larger diameter (and smaller height), which would achieve a reduction of the pressure.
Explanation:
my guess is A
emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to an atom or molecule making a transition from a high energy state to a lower energy state.