It’s 4 because a coiled springs is closely spaced then widen
Well,
The outer core of the Earth is mostly composed of iron and nickel.
The correct option is C.
Answer:
300 miles per hour
Explanation:
Speed is distance per unit time, expressed as s=d/t where t is the time taken, d is distance covered and s is the speed.
Convering s to hrs
To convert seconds to hours, we knkw that 1 hour has 60 minutes and each minute has 60 seconds. Therefore, 1 hour has 60*60=3600 seconds
If 3600s=1 h
60 s=?
By cross multiplication 60s*1 h/3600s=1/60 hours
Given distance as 5 miles and time as 1/60 hours then the speed will be 5 divided by 1/60 hrs which is equivalent to 5*60=300 miles per hour
1. The velocity of the spacecraft at position 2 is greater than the velocity of the craft at position 4.
This is due the gravity field of the Earth is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.
In this case the craft will be “catched” by the Earth’s gravitational field, making the craft to enter a circular orbit.
2. At point 1, the direction of the spacecraft changes because of the gravitational force between earth and the spacecraft.
As explained in the first answer, this is the exact point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.
3. Position 3 represents the orbital path of Earth
Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished. If the orbital path of the Earth were the opposite, the effect on the craft would be braking.
Note all of these is related to the gravitational assistance, this consists in a maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe or craft, changing its trajectory.
To learn more about velocity of the spacecraft : brainly.com/question/11900446
#SPJ4
Answer:
Rotating the loop until it is perpendicular to the field
Explanation:
Current is induced in a conductor when there is a change in magnetic flux.
The strength of the induced current in a wire loop moving through a magnetic field can be increased or decreased by the following methods:
By increasing the strength of the magnetic field there will be increased in the induced current. If the strength of the magnetic field is decreased then there is a decrease in induced current.
By increasing the speed of the wire there will be increased in the induced current. When the speed of the wire is decreased then there is a decrease in induced current.
By increasing the number of turns of the coil the strength of the induced current can be increased. when there is less number of turns in coils then there is a decrease in induced current.
Rotating the loop until it is perpendicular to the field will not increase the current induced in a wire loop moving through a magnetic field.
Therefore, the option is (c) is correct.