Given:
L = 1 mH =
H
total Resistance, R = 11 
current at t = 0 s,
= 2.8 A
Formula used:

Solution:
Using the given formula:
current after t = 0.5 ms = 
for the inductive circuit:


I =0.011 A
To develop this problem it is necessary to apply the concepts given in the balance of forces for the tangential force and the centripetal force. An easy way to detail this problem is through a free body diagram that describes the behavior of the body and the forces to which it is subject.
PART A) Normal Force.


Here,
Normal reaction of the ring is N and velocity of the ring is v




PART B) Acceleration





Negative symbol indicates deceleration.
<em>NOTE: For the problem, the graph in which the turning radius and the angle of suspension was specified was not supplied. A graphic that matches the description given by the problem is attached.</em>
Answer:
Doing science could be defined as carrying out scientific processes, like the scientific method, to add to science's body of knowledge.
Answer:
1.3823 rad/s
20.7345 m/s
28.66129935 m/s²

2006.29095 N radially outward
Explanation:
r = Radius = 15 m
m = Mass of person = 70 kg
g = Acceleration due to gravity = 9.81 m/s²
Angular velocity is given by

Angular velocity is 1.3823 rad/s
Linear velocity is given by

The linear velocity is 20.7345 m/s
Centripetal acceleration is given by

The centripetal acceleration is 28.66129935 m/s²
Acceleration in terms of g


Centripetal force is given by

The centripetal force is 2006.29095 N radially outward
The torque will be experienced when the centrifuge is speeding up of slowing down i.e., when it is accelerating and decelerating.
The doppler effect is the increase or decrease in the frequency of sound, light, or other waves as the source and observer move toward or away from each other.