Answer:4.34 miles
Explanation:
first Elevation =
After 1 minute Elevation changes to 
Ditsance travelled in 1 minute =
=10 mile
Now
tan59=
H=xtan59
tan19=
H=
Equating H
we get
1.319x=10tan19
x=2.61 miles
H=
=4.34 miles
To increase the acceleration of the car using the same engine, the mass of the car must be decreased.
<h3>
What is Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that path unless acted upon by an external force.
The first law is also called the law of inertia because it depends on the mass of the object. The greater the mass, the greater the inertia and more reluctant the object will be to move.
Thus, to increase the acceleration of the car using the same engine, the mass of the car must be decreased.
a = F/m
Learn more about Newton's law here: brainly.com/question/25545050
#SPJ1
Answer:
The first flowering plants appeared in the Mesozoic era, not the Paleozoic era.
Explanation:
The Mesozoic era was an era where numerous organisms started to develop in very unique and more advanced ways, both the animals and the plants. In the last period of the Mesozoic, the Cretaceous, the first flowering plants started to appear on the scene. This was revolutionary trait of the plants, and soon these plants started to occupy more and more space and became one of the dominant organisms on the planet. Other important evolution that took place in this period are the appearance of the dinosaurs and the mammals, both becoming the dominant animals on the planet, first the dinosaurs, after that the mammals.
Well im not sure if this is the correct dating materials but here are some examples of Fundamentals of radiometric dating<span>Radioactive decay.
Accuracy of radiometric dating.
Closure temperature.
The age equation.
Uranium–lead dating method.
Samarium–neodymium dating method.
Potassium–argon dating method.
<span>Rubidium–strontium dating method.</span></span>
A similar but separate notion is that of velocity, which the rate of change<span> of </span>position<span>. Example . If p(t) is the </span>position<span> of an </span>object<span> moving on a number line at time t (measured in minutes, say), then the average </span>rate of change<span> of p(t) is the average velocity of the </span>object<span>, measured in units per minute.</span>