The answer for the following problem is mentioned below.
- <u><em>Therefore the time period is 0.02 seconds.</em></u>
Explanation:
Frequency:
The number of waves that pass a fixed place in a given amount of time. (or)
The number of waves that pas by per second.
The SI unit of the frequency is Hertz(Hz).
Time period:
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds. (s)
Given:
Frequency (f) = 39.5 Hz
To calculate:
Time period (T)
We know;
According to the problem;
From the problem;
<u>f = </u>
<u></u>
Where;
f represents the frequency
T represents the time period
f = 
f = 0.02 seconds
<u><em>Therefore the time period is 0.02 seconds.</em></u>
The shortest and straight ones
We are asked to solve and determine the magnitude of the current flowing through the first device. In order for us to have a better understanding of the problem, we can refer to the attached picture which contains electric circuit diagram. Since it the problem we are already given with an electromotive source or the voltage supply and since the two resistance is in parallel, it would clearly mean that the voltage drop in each resistance is just the same. The resistance 1 uses the 40 volts at the same time the resistance 2 uses 40 volts also. Solving further for the current, we can apply Ohm's law which V = IR where "V" represents the voltage, the "I" represents the current and "R" represents the resistance.
Such as the solution in obtaining current is shown below:
I = V / R, substitute values we have it
I = 40 volts / 1208 ohms
I = 0.0331 Amperes
Therefore, the current flowing in the first device is
0.033 Amperes or 33 milliAmperes.
There are three things that can be represented on a motion map
These three things are:
1)Motion
2)Acceleration
3)Velocity
Answer:
I think A golf ball shot out of a small cannon
Explanation: