Answer: Option (c) is the correct answer.
Explanation:
It is known that the expression for potential energy related to charges and distance between their separation is as follows.
where,
and
are two charges
r = distance of separation between the charges
k = electrostatic constant
So, when both the charges are carry the same charge and r is small then the value of potential energy will be positive in nature.
Whereas if the distance of separation between the charges is infinitely large then the potential energy calculated will be zero everywhere.
Thus, we can conclude that the statement one object is negatively charged and the other one is positively charged, is incorrect.
<span> force of 10.0 N
</span>
<span>distance of 0.9 m
w=f*d
w=10*0.9
=9.0 j</span>
Answer:
(A) We are using them faster than they are replenished by nature
Answer:
The value is 
The direction is into the surface
Explanation:
From the question we are told that
The mass density is 
The coefficient of kinetic friction is
The current the wire carries is 
Generally the magnetic force acting on the wire is mathematically represented as

Here
is the frictional force which is mathematically represented as

While
is the magnetic force which is mathematically represented as

Here
is the angle between the direction of the force and that of the current
So

So

=> ![B = \mu_k * \frac{m}{L} * [\frac{g}{I} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%20%5Cmu_k%20%2A%20%20%5Cfrac%7Bm%7D%7BL%7D%20%2A%20%5B%5Cfrac%7Bg%7D%7BI%7D%20%5D)
=> ![B = 0.25 * 0.117 * [\frac{9.8}{1.24} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%200.25%20%2A%20%200.117%20%20%2A%20%5B%5Cfrac%7B9.8%7D%7B1.24%7D%20%5D)
=> 
Apply the right hand curling rule , the thumb pointing towards that direction of the current we see that the direction of the magnetic field is into the surface as shown on the first uploaded image
<h2>
Answer:When electrons absorb or emit quantized units of energy in the form of photons.</h2>
Explanation:
When a electron is collided with a photon with exactly the same energy it would require to get to any of the farther orbits,electron transition takes place to an orbit depending on the energy of the photon.
When electrons emit exactly the same amount energy that is difference between the current energy level and the new level,then the electron makes a transition to the new level.