Answer:
Cool I think u should do Marvel first
Answer:
#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
int main() {
string name[5];
int age[5];
int i,j;
for ( i = 0; i<=4; i++ ) {
cout << "Please enter student's name:";
cin >> name[i];
cout << "Please enter student's age:";
cin >> age[i];
}
for (i=0;i<=4;i++){
cout<<"Age of "<< name[i]<<" is "<<age[i]<<endl;
}
}
Output of above program is displayed in figure attached.
Answer:
471 days
Explanation:
Capacity of Carvins Cove water reservoir = 3.2 billion gallons i.e. 3.2 x 10˄9 gallons
As,
1 gallon = 0.133 cubic feet (cf)
Therefore,
Capacity of Carvins Cove water reservoir in cf = 3.2 x 10˄9 x 0.133
= 4.28 x 10˄8
Applying Mass balance i.e
Accumulation = Mass In - Mass out (Eq. 01)
Here
Mass In = 0.5 cfs
Mass out = 11 cfs
Putting values in (Eq. 01)
Accumulation = 0.5 - 11
= - 10.5 cfs
Negative accumulation shows that reservoir is depleting i.e. at a rate of 10.5 cubic feet per second.
Converting depletion of reservoir in cubic feet per hour = 10.5 x 3600
= 37,800
Converting depletion of reservoir in cubic feet per day = 37, 800 x 24
= 907,200
i.e. 907,200 cubic feet volume is being depleted in days = 1 day
1 cubic feet volume is being depleted in days = 1/907,200 day
4.28 x 10˄8 cubic feet volume will deplete in days = (4.28 x 10˄8) x 1/907,200
= 471 Days.
Hence in case of continuous drought reservoir will last for 471 days before dry-up.