Answer:
Explanation:
Y = 5 Sin27( .2x-3t)
= 5 Sin(5.4x - 81 t )
Amplitude = 5 m
Angular frequency ω = 81
frequency = ω / 2π
= 81 / (2 x 3.14 )
=12.89
Wave length λ = 2π / k ,
k = 5.4
λ = 2π / 5.4
= 1.163 m
Phase velocity =ω / k
= 81 / 5.4
15 m / s.
The wave is travelling in + ve x - direction.
Answer:
The difference is 7.6 grams.
Explanation:
In mathematics the difference of two numbers is express as the subtraction between them:

So to find out the difference between the two measured masses, a will be represented by 123.6 grams since is the bigger number, and b by 115.972 grams.
Therefore, it is get:

<u>Hence, the difference is 7.6 grams. </u>
The result of 7.628 will be expressed as 7.6 to have the correct number of significant figures.
Notice how that can be express in units of kilograms too since there is 1000 gram in 1 kilogram:
⇒ 
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²