When an object moves its length contracts in the direction of motion. The faster it moves the shorter it gets in the direction of motion.
The object in this question moves and then stops moving. So it's length first contracts and then expands to its original length when the motion stops.
The speed doesn't have to be anywhere near the speed of light. When the object moves its length contracts no matter how fast or slow it's moving.
C. Populations.
Hope that's right.
Answer:
λ = 5.4196 10⁻⁷m, λ = 541.96 nm this is green ligh
Explanation:
The photoelectric effect was explained by Eintein assuming that the light was made up of particles called photons and these collided with the electrons taking them out of the material.
K = h f -Ф
where K is the kinetic energy of the ejected electrons, hf is the energy of the light quanta and fi is the work function of the material.
The speed of light is related to wavelength and frequency
c = λ / f
f = c /λ
we substitute
K = h c / λ - Φ
for the case that they ask us the kinetic energy of the electons is zero (K = 0)
h c / λ = Ф
λ = h c / Ф
we calculate
λ = 6.63 10⁻³⁴ 3 10⁸ / 3.67 10⁻¹⁸
λ = 5.4196 10⁻⁷m
let's take nm
lam = 541.96 nm
this is green light
To solve this exercise we will use the concept related to heat loss which is mathematically given as

Where,
m = mass
= Specific Heat
Change in temperature
Replacing with our values we have that

Specific heat of mercury

Replacing

Therefore the heat lost by mercury is 0.09J