Answer:
[HI] = 0.264M
Explanation:
Based on the equilibrium:
2HI(g) ⇄ H₂(g) + I₂(g)
It is possible to define Kc of the reaction as the ratio between concentration of products and reactants using coefficients of each compound, thus:
<em>Kc = 0.0156 = [H₂] [I₂] / [HI]²</em>
<em />
As initial concentration of HI is 0.660mol / 2.00L = <em>0.330M, </em>the equlibrium concentrations will be:
[HI] = 0.330M - 2X
[H₂] = X
[I₂] = X
<em>Where X is reaction coefficient.</em>
<em />
Replacing in Kc:
0.0156 = [X] [X] / [0.330M - 2X]²
0.0156 = X² / [0.1089 - 1.32X + 4X²
]
0.00169884 - 0.020592 X + 0.0624 X² = X²
0.00169884 - 0.020592 X - 0.9376 X² = 0
Solving for X:
X = - 0.055 → False solution, there is no negative concentrations
X = 0.0330 → Right solution.
Replacing in HI formula:
[HI] = 0.330M - 2×0.033M
<h3>[HI] = 0.264M</h3>
Answer:try to make a good pic please I have ideas about the topic
Answer:- There are 32 valence electrons and it's tetrahedral in shape.
Explanations:- Atomic number of carbon is 6 and it's electron configuration is
. It has 4 electrons in the outer most shell means it has 4 valence electrons.
Atomic number of Br is 35 and it's electron configuration is
. It has 7 electrons in the outer most shell(2 in 4s and 5 in 4p) .
There is one C and four Br in the given compound. So, total number of valence electrons = 4+4(7) = 4+28 = 32
Four Br atoms are bonded to the central carbon atom and also there isn't any lone pair present on carbon. It makes it tetrahedral.
Answer:Effect of Catalysts on the Activation Energy. Catalysts provide a new reaction pathway in which a lower Activation energy is offered. A catalyst increases the rate of a reaction by lowering the activation energy so that more reactant molecules collide with enough energy to surmount the smaller energy barrier.
Explanation:
Your answer is in this