Answer:
Option C is correct.
The minimum amount of material that is needed for a fission reaction to keep going is called the critical mass.
Explanation:
Nuclear fission is the term used to describe the breakdown of the nucleus of a parent isotope into daughter nuclei.
Normally, the initial energy supplied for nuclear fission is the energy to initiate the first breakdown of the first set of radioactive isotopes that breakdown. Once that happens, the energy released from the first breakdown is enough to drive further breakdown of numerous isotopas in a manner that leads to more energy generation.
But, for this to be able to be sustained and not fizzle out, a particular amount of radioactive material to undergo nuclear fission must be present. This particular amount is termed 'critical mass'
Hope this Helps!!!
This follows the law of conservation of momentum. Momentum is the product of mass and velocity of object.
Momentum = mass(m) x velocity(v)
law of conservation of momentum means that the total momentum of system before the collision of 2 objects is equal to the total momentum after the collision
Before the collision total momentum
= m1v1 + m2v2
m1 = 2 kg
v1 = 2 m/s
m2 = 6 kg
v2 = 0 m/s
substituting the values in the equation
total momentum before = (2 kg x 2 m/s) + (6 kg x 0 m/s)
total momentum = 4 kgm/s
after the collision the 2 objects stick together and have a common velocity
total momentum after the collision = (6 kg + 2 kg)x V = 8V
V = speed of the conglomerate particle
since total momentum before is equal to total momentum after
8V = 4
V = 2 m/s
speed of conglomerate particle is 2 m/s
Answer:
The wavelength the student should use is 700 nm.
Explanation:
Attached below you can find the diagram I found for this question elsewhere.
Because the idea is to minimize the interference of the Co⁺²(aq) species, we should <u>choose a wavelength in which its absorbance is minimum</u>.
At 400 nm Co⁺²(aq) shows no absorbance, however neither does Cu⁺²(aq). While at 700 nm Co⁺²(aq) shows no absorbance and Cu⁺²(aq) does.
Attached earlobes are recessive, and are represented with a lowercase
The change in internal energy of the combustion of biphenyl in Kj is calculated as follows
=heat capacity of bomb calorimeter x delta T where delta T is change in temperature
delta T = 29.4 -25.8= 3.6 c
= 5.86 kj/c x 3.6 c = 21.096 kj