Answer:
- <u><em>Magnesium and fluorine.</em></u>
Explanation:
<em>Ionic compounds</em> are formed by the electrostatic attraction of cations and anions.
Cations, positive ions, are formed when atoms lose electrons, and anions, negative ions, are formed when atoms gain electrons.
When two different atoms have similar atraction for electrons (electronegativity) they will not donate to nor catch electrons from each other, so cations and anions will not be formed. Instead, the atoms would prefer to share electrons forming covalent bonds to complete their outermost shell (octet rule).
Then, in order to form ionic compounds the electronegativities have to substantially different. This situation does not happen between two nonmetal elements, which nitrogen and sulfur are. Then, you can predict safely that nitrogen and sulfur will not form an ionic compound.
Ionic compounds, then require the electronegativity difference that exist between some metals and nonmetals. Being magnesium an alkaline earth metal, its electronegativity is very low. On the other hand, fluorine the first element of the group 17, has the highest electronegativity of all the elements.Thus magnesium and fluorine will have enough electronegativity difference to justify the exchange of electrons, forming ions and, consequently, ionic compounds.
Answer:
Aluminum metal
Explanation:
In order to properly answer this or a similar question, we need to know some basic rules about galvanic cells and standard reduction potentials.
First of all, your strategy would be to find a trusted source or the table of standard reduction potentials. You would then need to find the half-equations for aluminum and gold reduction:


Since we have a galvanic cell, the overall reaction is spontaneous. A spontaneous reaction indicates that the overall cell potential should be positive.
Since one half-equation should be an oxidation reaction (oxidation is loss of electrons) and one should be a reduction reaction (reduction is gain of electrons), one of these should be reversed.
Thinking simply, if the overall cell potential would be obtained by adding the two potentials, in order to acquite a positive number in the sum of potentials, we may only reverse the half-equation of aluminum (this would change the sign of E to positive):
Notice that the overall cell potential upon summing is:

Meaning we obey the law of galvanic cells.
Since oxidation is loss of electrons, notice that the loss of electrons takes place in the half-equation of aluminum: solid aluminum electrode loses 3 electrons to become aluminum cation.
Answer is: 25,06 kJ of energy must be added to a 75 g block of ice.
ΔHfusion(H₂O) = 6,01 kJ/mol.
T(H₂O) = 0°C.
m(H₂O) = 75 g.
n(H₂O) = m(H₂O) ÷ M(H₂O).
n(H₂O) = 75 g ÷ 18 g/mol.
n(H₂O) = 4,17 mol.
Q = ΔHfusion(H₂O) · n(H₂O)
Q = 6,01 kJ/mol · 4,17 mol
Q = 25,06 kJ.
<em>B</em><em> </em><em>i</em><em>s</em><em> </em><em>r</em><em>i</em><em>g</em><em>h</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>t</em><em>h</em><em>i</em><em>n</em><em>k</em><em> </em><em>b</em><em>r</em><em>o</em><em>/</em><em>s</em><em>i</em><em>s</em>
Answer:
Unless you mistyped the question, the answer should be 25+