Answer: Arsenic has five valence electrons.
Explanation: Good luck!
Answer: Some are solid, some are gaseous, a few are liquid. Some are metallic: they have a peculiar lustre; some are coloured (like sulfur) or colourless. Some have a low density; some have a high density. Some are malleable and ductile; some are brittle. Some conduct electricity and heat well; some don’t.
Many metals tend to have structural uses. Nonmetallic elements less so.
Metals tend to have crystal forms featuring close-packed centro-symmetrical structures. Nonmetallic elements tend to have crystal structures featuring more open and directionally packed structures.
Some are especially toxic; some are essential to life; some are both depending on exposure level.
Most are stable; some are less so.
Some elements are highly reactive; some are almost inert (helium, neon, and argon may be completely inert in ambient conditions).
Many metals have basic oxides; quite a few oxides of nonmetallic elements form acids when they are dissolved in water. Some elements can go both ways.
There are many generalisations you can make about metallic and nonmetallic elements, and quite a few exceptions at the margins.
Explanation:
Answer:
They should obtain the same Rf for the same compounds.
Explanation:
The <em>Rf</em> is defined as A/B. Where A is the displacement of the substance of interest, and B is the solvent front.
By dividing the substance's displacement by B, we make it so that the Rf factor is equal for identical compounds in the same mobile phase, no matter what the solvent front is.
Explanation:
The given data is as follows.
= 98.70 kPa = 98700 Pa,
T =
= (30 + 273) K = 303 K
height (h) = 30 mm = 0.03 m (as 1 m = 100 mm)
Density = 13.534 g/mL = 
= 13534 
The relation between pressure and atmospheric pressure is as follows.
P = 
Putting the given values into the above formula as follows.
P = 
= 
= 102683.05 Pa
= 102.68 kPa
thus, we can conclude that the pressure of the given methane gas is 102.68 kPa.
Answer:
If the volume of the container is decreased by a factor of 2 the pressure is is increased by the same factor to 1664 torr.
Explanation:
Here we have Boyle's law which states that, at constant temperature, the volume of a given mass of gas is inversely proportional to its pressure
V ∝ 1/P or V₁·P₁ = V₂·P₂
Where:
V₁ = Initial volume
V₂ = Final volume = V₁/2
P₁ = Initial pressure = 832 torr
P₂ = Final pressure = Required
From V₁·P₁ = V₂·P₂ we have,
P₂ = V₁·P₁/V₂ = V₁·P₁/(V₁/2)
P₂ = 2·V₁·P₁/V₁ = 2·P₁ = 2× 832 torr = 1664 torr