Answer:
1) The correct answer is option b.
2) The correct answer is option a.
Explanation:
1)

At 300 K, the value of the 
The
and
is related by :

where,
= equilibrium constant at constant pressure
= equilibrium concentration constant
R = gas constant = 0.0821 L⋅atm/(K⋅mol)
T = temperature = 300 K
= change in the number of moles of gas = 1 - 2 = -1
Now put all the given values in the above relation, we get:


The
of the reaction = 24.63
Given = [X] = [Y] = [Z] = 1.0 M
Value of reaction quotient = Q
![Q=\frac{[Z]}{[X][Y]}=\frac{1.0 M}{1.0M\times 1.0 M}=1](https://tex.z-dn.net/?f=Q%3D%5Cfrac%7B%5BZ%5D%7D%7B%5BX%5D%5BY%5D%7D%3D%5Cfrac%7B1.0%20M%7D%7B1.0M%5Ctimes%201.0%20M%7D%3D1)
, the equilibrium will move in forward direction that is in the right direction.
2)

At 300 K, the value of the 
Given = 
Value of reaction quotient in terms of partial pressure = 


the equilibrium will move in backword direction that is in the left direction.
Answer is: D. It is not sodium bicarbonate.
Balanced chemical reaction of heating sodium bicarbonate: 2NaHCO₃ → Na₂CO₃ + CO₂ + H₂O.
This is chemical change (chemical reaction), because new substances are formed (sodium carbonate, carbon(IV) oxide and water), the atoms are rearranged, so there is no sodium bicarbonate (NaHCO₃) in the test tube.
Answer:
H₂O + CO₂ → H₂CO₃
Option D is correct.
Law of conservation of mass:
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two H and two O atoms present on left side while on right side only one O and two H atoms are present so mass in not conserved. This option is incorrect.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side of equation while on right side two H, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. This option is correct.
Answer:
space between particles
Explanation:
Properties of gases:
Molecule of gases randomly move everywhere and occupy all available space.
Gases don't have definite volume and shape and take the shape and volume of container in which it present.
Their densities are very low as compared to the liquid and solids.
Gas molecules are at long distance from each other therefore by applying pressure gases can be compressed.
The very weak inter molecular forces are present between gas molecules.
Properties of Liquid:
Liquid have definite volume but don,t have definite shape.
Their densities are high as compared to the gases but low as compared to the solids.
In liquid, molecules are close to each other and have greater inter molecular forces as compared to the gas molecules.
Properties of solids:
Solids have definite volume and shape.
In solids molecules are tightly pack and very close to each other.
Their melting and boiling point are every high.
The densities of solids are also very high as compared to the liquid and gas.
There are very strong inter molecular forces are present between solid molecules.
Answer:
The answer is hydrogen gas and oxygen gas
Explanation: