Answer:
The correct option is: AgNO₃(aq) + KCl(aq) = AgCl(s) + KNO₃(aq)
Explanation:
Precipitation reaction is a chemical reaction that involves reaction between <em>two soluble salts to give an insoluble salt.</em> This <u>insoluble salt exists as a solid</u> and settles down.
Therefore, the solid formed in a precipitation reaction is known as the precipitate.
As the solid silver nitrate (AgNO₃) and solid potassium chloride (KCl) are <u>soluble in water</u>, therefore, their aqueous solutions are represented as AgNO₃(aq) and KCl(aq), respectively.
The precipitation reaction of AgNO₃(aq) and KCl(aq) gives an <u>insoluble salt, silver chloride (AgCl) and a soluble salt, potassium nitrate (KNO₃).</u>
The insoluble salt, <u>AgCl is called the precipitate</u> and is represented as AgCl(s). Whereas, the <u>soluble salt</u>, KNO₃ is represented as KNO₃ (aq).
<u>Therefore, the chemical equation for this precipitation reaction is:</u>
AgNO₃(aq) + KCl(aq) → AgCl(s) + KNO₃(aq)
Answer:
Bohr's model
Explanation:
Rutherford's experimental evidence best supports the Bohr's model. Recall that in the Bohr's model, the Rutherford model was regarded as a fundamental stepping stone.
Experimental evidence from the Bohr's model shows that the atom is not a sphere of positive charges in which negative charges were embedded. It would have been impossible for Neils Bohr to build the quantum theory from such a model.
Hence, the nuclear theory of Rutherford provided a fundamental stepping stone and experimental backup for the Bohr's model of the atom.
All other models mentioned in task 1 (Dalton, Thompson and Bohr) all mention the fact that the atom is made of particles. Thompson effectively described the particles as negative and positive in nature. Bohr took the idea further by proposing that the negative particles (electrons) were actually found in energy levels that are quantized.
Answer:
c iodine
Explanation:
fluorine is a halogen group element like Bromine, Iodine,Astatine,Chloride
Answer:
Its because once you go black, there's no going back
Explanation: