1200
-------=171 miles per hour
7
The answer is flight technology, satelite technology, and exploration technology.
The flight technology include advances in jet propulsion and navigation. Satelite have become more and more powerful and hecne communication with distant objects is increasing in efficiency. The emergence of AI robots in space exploration are reducing risks to humans in these deep ventures.
B.The water molecules in the black can had the largest increase in average kinetic energy.
<u>Explanation:</u>
Here, black painted can absorbs more heat than the other color painted cans.
Black color absorbs all the heat and didn't reflect anything back, so it absorbs the most heat.
White color reflects all the heat, so heat absorbed by the white can is least.
When the black can absorbs heat then the water molecules in the can gets its maximum amount of kinetic energy so that the water molecules in the can collide with each other and also along with the walls of the can here, and so the average kinetic energy increases.
Answer:
The electronic transition of an electron back to a lower energy level generates an emission spectrum.
Explanation:
The atomic emission spectrum¹ of an element has its origin when an electronic transition² occurs. An electron in an atom or ion³will absorb energy coming from a source and pass to a higher energy level, the electron, upon returning to its base state will emit a photon⁴ or a series of photons.
Hence, that leads to the formation of an emission spectrum.
Remember that an electron has energy levels in an atom or ion, at which each energy level has a specific value.
The energy values will differ from one element to another. So, it can be concluded that each element has a unique pattern of emission lines.
Key terms:
¹Spectrum: Decomposition of light in its characteristic colors.
²Electronic transition: When an electron passes from one energy level to another, either for the emission or absorption of a photon.
³Ion: An atom electrically charged due to the gain or loss of electrons.
⁴Photon: Elementary particle that constitutes light.
Answer:
Concepts and Principles
1- Kinetic Energy: The kinetic energy of an object is:
K=1/2*m*v^2 (1)
where m is the object's mass and v is its speed relative to the chosen coordinate system.
2- Gravitational potential energy of a system consisting of Earth and any object is:
U_g = -Gm_E*m_o/r*E-o (2)
where m_E is the mass of Earth (5.97x 10^24 kg), m_o is the mass of the object, and G = 6.67 x 10^-11 N m^2/kg^2 is Newton's gravitational constant.
Solution
The argument:
My friend thinks that escape speed should be greater for more massive objects than for less massive objects because the gravitational pull on a more massive object is greater than the gravitational pull for a less massive object and therefore the more massive object needs more speed to escape this gravitational pull.
The counterargument:
We provide a mathematical counterargument. Consider a projectile of mass m, leaving the surface of a planet with escape speed v. The projectile has a kinetic energy K given by Equation (1):
K=1/2*m*v^2 (1)
and a gravitational potential energy Ug given by Equation (2):
Ug = -G*Mm/R
where M is the mass of the planet and R is its radius. When the projectile reaches infinity, it stops and thus has no kinetic energy. It also has no potential energy because an infinite separation between two bodies is our zero-potential-energy configuration. Therefore, its total energy at infinity is zero. Applying the principle of energy consersation, we see that the total energy at the planet's surface must also have been zero:
K+U=0
1/2*m*v^2 + (-G*Mm/R) = 0
1/2*m*v^2 = G*Mm/R
1/2*v^2 = G*M/R
solving for v we get
v = √2G*M/R
so we see v does not depend on the mass of the projectile