First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
Answer:
1528.3L
Explanation:
To solve this problem we should know this formula:
V₁ / T₁ = V₂ / T₂
We must convert the values of T° to Absolute T° (T° in K)
21°C + 273 = 294K
70°C + 273 = 343K
Now we can replace the data
1310L / 294K = V₂ / 343K
V₂ = (1310L / 294K) . 343K → 1528.3L
If the pressure keeps on constant, volume is modified directly proportional to absolute temperature. As T° has increased, the volume increased too
What exactly is the question you are asking?
Answer:
hydrogen bonds between water molecules
Explanation:
The hydrogen bonds between water molecules conditions the bulk of its physical property most especially its relatively high boiling point. The hydrogen bond results from the attraction between the oxygen of a water molecule and the hydrogen of another water molecule. The more electronegative oxygen atom causes a distortion and the attraction leads to a strong intermolecular bond between atoms of the water molecules.
Hydrogen bond is a very strong bond and it is responsible for the physical properties of water.