Answer:
<u>Oxygen</u>
Explanation:
If we had the same question then the table would've given the specific heat for these gases:
Water (steam) | 2.08
Air (25°C) | 1.01
Oxygen | 0.92
Hydrogen | 14.30
Out of these options, oxygen has the lowest specific heat and so it has the least heat-storing ability of the group.
Don’t worry, you’re right :)
The answer is 3.63. seconds.
Second order reaction is the reaction in which the rate of reaction depends on either the concentration of two reactant species or on the two times the concentration of single reactant species.
What is the integrated rate law for the second-order reaction?
- The integrated rate law that relates the concentration, time and rate constant for the second-order reaction is:
Where
- Now, in the given question,
k =
- Thus, using the rate law, the time is calculated as-
Therefore,
- Hence, the it would take 3.63 seconds for the concentration of to decrease from 0.62 M to 0.28 M if the reaction is second order.
To learn more about second order reaction visit:
brainly.com/question/17217385
#SPJ4
Answer:
<u>225.6 kJ</u>, <em>assuming the water is already at 100 °C</em>
Explanation:
The correct answer to this question will depend on the initial temperature of the water to which heat is added to produce steam. Energy is required to raise the water temperature to 100°C. At that point, an energy of vaporization is needed to convert liquid water at 100 °C to water vapor at 100°C. The heat of vaporization for water is 2256.4 kJ/kg. The energy required to bring 100g of water from a lower temperature to 100°C is calculated at 4.186 J/g°C. We don't know the starting temperature, so this step cannot be calculated.
<em><u>Assuming</u></em> that we are already at 100 °C, we can calculate the heat required for vaporization:
(100.0g)(1000.0g/1 kg)(2256.4 kJ/kg) = 225.6 kJ for 100 grams water.
Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J