1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
2 years ago
13

In which of the following states would homes most likely have the deepest foundation?

Engineering
1 answer:
Evgen [1.6K]2 years ago
5 0

Answer:

D) Louisiana, to prevent homes from blowing away in hurricanes.

Explanation:

Louisiana is famous for hurricanes i think that if they were well prepared and had deeper foundation the damage may lower by a good lot.

You might be interested in
A turbojet aircraft flies with a velocity of 800 ft/s at an altitude where the air is at 10 psia and 20 F. The compressor has a
nika2105 [10]

Answer:

Pressure = 115.6 psia

Explanation:

Given:

v=800ft/s

Air temperature = 10 psia

Air pressure = 20F

Compression pressure ratio = 8

temperature at turbine inlet = 2200F

Conversion:

1 Btu =775.5 ft lbf, g_{c} = 32.2 lbm.ft/lbf.s², 1Btu/lbm=25037ft²/s²

Air standard assumptions:

c_{p}= 0.0240Btu/lbm.°R, R = 53.34ft.lbf/lbm.°R = 1717.5ft²/s².°R 0.0686Btu/lbm.°R

k= 1.4

Energy balance:

h_{1} + \frac{v_{1} ^{2} }{2} = h_{a} + \frac{v_{a} ^{2} }{2}\\

As enthalpy exerts more influence than the kinetic energy inside the engine, kinetic energy of the fluid inside the engine is negligible

hence v_{a} ^{2} = 0

h_{1} + \frac{v_{1} ^{2} }{2} = h_{a} \\h_{1} -h_{a} = - \frac{v_{1} ^{2} }{2} \\ c_{p} (T_{1} -T_{a})= - \frac{v_{1} ^{2} }{2} \\(T_{1} -T_{a}) = - \frac{v_{1} ^{2} }{2c_{p} }\\ T_{a}=T_{1} +  \frac{v_{1} ^{2} }{2c_{p} }

T_{1} = 20+460 = 480°R

T_{a}  =480+  \frac{(800)(800}{2(0.240)(25037}= 533.25°R

Pressure at the inlet of compressor at isentropic condition

P_{a } =P_{1}(\frac{T_{a} }{T_{1} }) ^{k/(k-1)}

P_{a} = (10)(\frac{533.25}{480}) ^{1.4/(1.4-1)}= 14.45 psia

P_{2}= 8P_{a} = 8(14.45) = 115.6 psia

4 0
3 years ago
Read 2 more answers
Two routes connect an origin and a destination. Routes 1 and 2 have performance functions t1 = 2 + X1 and t2 = 1 + X2, where the
Musya8 [376]

Solution :

Given

$t_1=2+x_1$

$t_2=1+x_2$

Now,

$P(h

$0.4=1-P(h \geq5)$

$0.6=P(h \geq5)$

$0.6= e^{\frac{-x_1 5}{3600}}$

Therefore,   $x_1=368 \ veh/h$

                        $=\frac{368}{1000} = 0.368$

Given,   $t_1=2+x_1$

                 = 2 + 0.368

                 = 2.368 min

At user equilibrium, $t_2=t_1$

∴  $t_2$ = 2.368 min

$t_2=1+x_2$

$2.368=1+x_2$

$x_2 = 1.368$

$x_2 = 1.368 \times 1000$

    = 1368 veh/h

7 0
3 years ago
A furnace wall composed of 200 mm, of fire brick. 120 mm common brick 50mm 80% magnesia and 3mm of steel plate on the outside. I
Liula [17]

Answer:

  • fire brick / common brick : 1218 °C
  • common brick / magnesia : 1019 °C
  • magnesia / steel : 90.06 °C
  • heat loss: 4644 kJ/m^2/h

Explanation:

The thermal resistance (R) of a layer of thickness d given in °C·m²·h/kJ is ...

  R = d/k

so the thermal resistances of the layers of furnace wall are ...

  R₁ = 0.200/4 = 0.05 °C·m²·h/kJ

  R₂ = 0.120 2.8 = 3/70 °C·m²·h/kJ

  R₃ = 0.05/0.25 = 0.2 °C·m²·h/kJ

  R₄ = 0.003/240 = 1.25×10⁻⁵ °C·m²·h/kJ

So, the total thermal resistance is ...

  R₁ +R₂ +R₃ +R₄ = R ≈ 0.29286 °C·m²·h/kJ

__

The rate of heat loss is ΔT/R = (1450 -90)/0.29286 = 4643.70 kJ/(m²·h)

__

The temperature drops across the various layers will be found by multiplying this heat rate by the thermal resistance for the layer:

  fire brick: (4543.79 kJ/(m²·h))(0.05 °C·m²·h/kJ) = 232 °C

so, the fire brick interface temperature at the common brick is ...

  1450 -232 = 1218 °C

For the next layers, the interface temperatures are ...

  common brick to magnesia = 1218 °C - (3/70)(4643.7) = 1019 °C

  magnesia to steel = 1019 °C -0.2(4643.7) = 90.06 °C

_____

<em>Comment on temperatures</em>

Most temperatures are rounded to the nearest degree. We wanted to show the small temperature drop across the steel plate, so we showed the inside boundary temperature to enough digits to give the idea of the magnitude of that.

5 0
3 years ago
Name two common fuel gases that can be used for oxyfuel cutting
zlopas [31]
Hi

Acetylene and propane

I hope this help you!
8 0
1 year ago
List 6 different mechanisms in the Rube Goldberg cartoon and predict the purpose of each. Does the mechanism change speed, force
vodka [1.7K]

Answer: Rotary - because it has to

Around in a circle

Explanation:

i hope this helped u

7 0
3 years ago
Other questions:
  • What is the stress concentration factor of a shaft in torsion, where D=1.25 in. and d=1 in. and the fillet radius is, r=0.2 in.a
    7·1 answer
  • A soil has the following Green-Ampt parameters Effective porosity 0.400 Initial volumetric moisture content-15% Hydraulic Conduc
    6·1 answer
  • For the reactions of ketone body metabolism, _______.
    15·1 answer
  • 10. To cut 1/4" (6 mm) thick mild steel at a rate of 40 inches per minute, the current would be set to
    7·1 answer
  • Find values of the intrinsic carrier concentration n for silicon at –70° 0° 20° C, 100° C, and C. At 125° each temperature, what
    14·1 answer
  • Which of the following is an example of a computer simulation?
    7·1 answer
  • What do you do if building doesn't have enough water pressure for sprinklers? a. Increase pipe size b. Adjust budget to accommod
    15·1 answer
  • Which actions would the maintenance and operations crews carry out as a building is completed and preparing to open to the publi
    8·2 answers
  • If we didn’t have the spark what could not happen?
    9·1 answer
  • Pipelines are a useful means of transporting oil because they: Multiple select question. are fast never fail to deliver are chea
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!