A. : In this reaction one of the product, FeS is insoluble. Therefore, this is a precipitation reaction.
B. : In this reaction, the product is a solid(insoluble). So, this is a precipitation reaction too.
C.: In this reaction, both the products are soluble. So this is not a precipitation reaction.
D.: In this reaction, both the products are soluble. So this is not a precipitation reaction.
E. : In this reaction, the product AgCl is a precipitate. So, it is a precipitation reaction.
Answer:
Thomson made the following conclusions: The cathode ray is composed of negatively-charged particles. The particles must exist as part of the atom, since the mass of each particle is only ∼ 20001start fraction, 1, divided by, 2000, end fraction the mass of a hydrogen atom.
Explanation:
The final temperature of the mixture : 21.1° C
<h3>Further explanation </h3>
The law of conservation of energy can be applied to heat changes, i.e. the heat received / absorbed is the same as the heat released
Q in(gained) = Q out(lost)
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Q ethanol=Q water
mass ethanol=

mass water =

then the heat transfer :

Fgdgdfgdfgdfgdfgfdgfsdasffglkjhuifgnufgu
Answer:
The same genes or slightly different versions of the same gene can be found on each chromosome in a pair. They form a line and split off bits of themselves, which they barter with one another. In sexual reproduction, crossing over is the first method that genes are shuffled to develop genetic variation.