D. you are not making any motion
Answer:
The Partial pressure of Xe and Ne will be 4.95 atm and 1.55 atm. The number of moles of Xe and Ne will be 3.13 and 0.981
Explanation:
Let the total pressure of the vessel= 6.5 atm and mole fraction of Xenon= 0.761
As we know,

According to Dalton's Law of partial pressure-

Where,
The pressure of the gas component in the mixture
Mole fraction of that gas component
The total pressure of the mixture

<u>Calculation: </u>
To calculate the number of moles,
PV=nRT


Learn more about Dalton's Law of partial pressure here;
brainly.com/question/14119417
#SPJ4
Answer:
1116 g.
Explanation:
The balanced equation for the reaction is given below:
4Na + O₂ —> 2Na₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Next, we shall determine the theoretical yield of Na₂O. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Therefore, 9 moles of O₂ will react to produce = 9 × 2 = 18 moles of Na₂O.
Finally, we shall determine the mass in 18 moles of Na₂O. This can be obtained as follow:
Mole of Na₂O = 18 moles
Molar mass of Na₂O = (23×2) + 16
= 46 + 16
= 62 g/mol
Mass of Na₂O =?
Mass = mole × molar mass
Mass of Na₂O = 18 × 62
Mass of Na₂O = 1116 g
Thus, the theoretical yield of Na₂O is 1116 g.
<span>The pH is given by the Henderson - Hasselbalch equation:
pH = pKa + log([A-]/[HA])
pH = -log(</span><span>1.3 x 10^-5) + log(0.50/0.40)
pH = 4.98
The answer to this question is 4.98.
</span>
Condenser Lens - This lens system is located immediately under the stage and focuses the light on the specimen.