The van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.
<h3>What is the value of Van t Hoff factor?</h3>
For most non-electrolytes dissolved in water, the Van 't Hoff factor is essentially $ 1 $ . For most ionic compounds dissolved in water, the Van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance.
<h3>Which has highest Van t Hoff factor?</h3>
The Van't Hoff factor will be highest for
A. Sodium chloride.
B. Magnesium chloride.
C. Sodium phosphate.
D. Urea.
Learn more about van't off factor here:
<h3>
brainly.com/question/22047232</h3><h3 /><h3>#SPJ4</h3>
Answer:
The molecular formula of cacodyl is C₄H₁₂As₂.
Explanation:
<u>Let's assume we have 1 mol of cacodyl</u>, in that case we'd have 209.96 g of cacodyl and the<u> following masses of its components</u>:
- 209.96 g * 22.88/100 = 48.04 g C
- 209.96 g * 5.76/100 = 12.09 g H
- 209.96 g * 71.36/100 = 149.83 g As
Now we convert those masses into moles:
- 48.04 g C ÷ 12 g/mol = 4.00 mol C
- 12.09 g H ÷ 1 g/mol = 12.09 mol H
- 149.83 g As ÷ 74.92 g/mol = 2.00 mol As
Those amounts of moles represent the amount of each component in 1 mol of cacodyl, thus, the molecular formula of cacodyl is C₄H₁₂As₂.
Answer: a) The
of acetic acid at
is 
b) The percent dissociation for the solution is 
Explanation:

cM 0 0

So dissociation constant will be:

Give c= 0.10 M and
= ?
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![[H^+]=1.35\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D1.35%5Ctimes%2010%5E%7B-3%7DM)
![[CH_3COO^-]=1.35\times 10^{-3}M](https://tex.z-dn.net/?f=%5BCH_3COO%5E-%5D%3D1.35%5Ctimes%2010%5E%7B-3%7DM)
![[CH_3COOH]=(0.10M-1.35\times 10^{-3}=0.09806M](https://tex.z-dn.net/?f=%5BCH_3COOH%5D%3D%280.10M-1.35%5Ctimes%2010%5E%7B-3%7D%3D0.09806M)
Putting in the values we get:


b) 



Answer:
2Al + 3H2SO4 → Al2(SO4)3 + 3H2
2Fe + 3Cl2 → 2FeCl3
Explanation:
1. (SO4) 3 you see this 3 it means that 3 must be behind H2SO4. So now it's 3H2SO4.
2. If 3 is now behind one H2, it must be behind the other.
So now it's 3H2.
3. Al2 (SO4) 3 has 2 ahead of Al which means there will be 2Al in the reactants.
1. FeCl3 has 3 ahead of Cl, and Cl2 has 2. Which means that behind FeCl3 goes 2, and behind Cl2 goes 3 so now we have equated all Cl.
2. Since it is now 2FeCl3, we know that there must be 2 in the second Fe. It's 2Fe now.