2 ways to do this
a. find %Cl in CaCl2
2 x 35.45g/mole = 70.9g Cl
70.9g Cl / 110.9g/mole CaCl2 = 63.93% Cl in CaCl2
0.6963 x 145g = 92.7g = mass Cl
b. determine moles CaCl2 present then mass Cl
145g / 110.9g/mole = 1.31moles CaCl2 present
2moles Cl / 1mole CaCl2 x 1.31moles = 2.62moles Cl
2.62moles Cl x 35.45g/mole = 92.7g Cl
Answer:
If we assume the molar volumes of water and ethanol 17.0 and 57.0 cm³/mol, respectively, Vmix = 20.5 cm³.
Explanation:
The molar volume of a substance is the ratio between the volume and the number of moles of the substance. It represents the volume that 1 mol of it occupies. Because we don't have access to page 24, let's assume the molar volumes of water and ethanol 17.0 and 57.0 cm³/mol, respectively.
The volume of mixture (Vmix) is the sum of the volume of each substance, which is the number of moles multiplied by molar volume, so:
Vmix = 0.300*57 + 0.200*17
Vmix = 17.1 + 3.4
Vmix = 20.5 cm³
Answer:
The volume will also decrease.
Explanation:
This illustration clearly indicates Boyle's law.
Boyle's law states that the volume of a fixed mass of gas is directly proportional to the absolute temperature, provided the pressure remains constant. Mathematically, it is represented as:
V & T
V = KT
K = V/T
V1/T1 = V2/T2 =... = Vn/Tn
Where:
T1 and T2 are the initial and final temperature respectively, measured in Kelvin.
V1 and V2 are the initial and final volume of the gas respectively.
From the illustration above, the volume is directly proportional to the temperature. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume also will decrease.
Hey there!
Answer: Protons
The atom in a sample of an element must contain nuclei with the same number of protons. If the protons change in number, then the element will modify as well.
Thank you!
The products will be magnesium phosphate and potassium chloride. You then have to watch a solubility chart to see which one of these is not soluable. In this case it is magnesium phosphate.