Answer:
a solid forms, and there is a change of color.
Explanation:
Answer:
5.37 × 10⁻⁴ mol/L
Explanation:
<em>A chemist makes 660. mL of magnesium fluoride working solution by adding distilled water to 230. mL of a 0.00154 mol/L stock solution of magnesium fluoride in water. Calculate the concentration of the chemist's working solution. Round your answer to 3 significant digits.</em>
Step 1: Given data
- Initial concentration (C₁): 0.00154 mol/L
- Initial volume (V₁): 230. mL
- Final concentration (C₂): ?
- Final volume (V₂): 660. mL
Step 2: Calculate the concentration of the final solution
We want to prepare a dilute solution from a concentrated one. We can calculate the concentration of the final solution using the dilution rule.
C₁ × V₁ = C₂ × V₂
C₂ = C₁ × V₁ / V₂
C₂ = 0.00154 mol/L × 230. mL / 660. mL = 5.37 × 10⁻⁴ mol/L
Answer:
V₂ = 0.656 L
Explanation:
Given data:
Initial volume = 3.5 L
Initial pressure = 2.5 KPa
Final volume = ?
Final pressure = 100 mmHg (100/7.501=13.33 KPa)
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
2.5 KPa × 3.5 L = 13.33 KPa × V₂
V₂ = 8.75 KPa. L/13.33 KPa
V₂ = 0.656 L
6.022x10^23 is Avogadro’s number. Use this whenever you work with Stoichiometry involving Atoms, formula units, or molecules. 1 mol of anything is always Avogadro’s number.
Multiply everything on the top= 6.93 x 10^23
Divide by everything on the bottom = 6.93 x 10^23
Answer: 6.93 x 10^23 atoms Cu.