We are asked to convert 25 cg to units of hg.
1 cg = 1 centigram = 10⁻² g
1 hg = 1 hectogram = 10² g
The options given are:
a) 1 hg/ 10² g
b) 10² cg/ 1 hg
c) 10² hg/ 1 cg
d) 10⁻² g/ 1 cg
To convert 25 cg to 1 hg, we could convert the 25 cg to grams first, then grams to hg.
25 cg · 10⁻² g/ 1cg = 0.25 g
Here we have converted our number from cg to grams. We can use another conversion of grams to hg to complete the conversion.
0.25 g · 1 hg/ 10² g = 0.0025 hg
Therefore, the first conversion we used was d) 10⁻² g/ 1 cg.
Answer:
It has to have a problem base and a realistic explanation.
Explanation:
It needs to have enough information for you to be able to come up with an answer and realistic explanation.
Hope I helped :)
Answer:
Explanation: When solutions of potassium iodide and lead nitrate are combined?
The lead nitrate solution contains particles (ions) of lead, and the potassium iodide solution contains particles of iodide. When the solutions mix, the lead particles and iodide particles combine and create two new compounds, a yellow solid called lead iodide and a white solid called potassium nitrate. Chemical Equation Balancer Pb(NO3)2 + KI = KNO3 + PbI2. Potassium iodide and lead(II) nitrate are combined and undergo a double replacement reaction. Potassium iodide reacts with lead(II) nitrate and produces lead(II) iodide and potassium nitrate. Potassium nitrate is water soluble. The reaction is an example of a metathesis reaction, which involves the exchange of ions between the Pb(NO3)2 and KI. The Pb+2 ends up going after the I- resulting in the formation of PbI2, and the K+ ends up combining with the NO3- forming KNO3. NO3- All nitrates are soluble. ... (Many acid phosphates are soluble.)
Answer:
Plants using glucose to make ATP molecules during the process of photosynthesis which results in the plant releasing oxygen.
This is cellular respiration. ↑
<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g