Answer:
the mass should be bring closer to the point about which we are finding torque
Explanation:
τ = Σr × F = rmg
where m is the mass, g is acceleration due to gravity, and r is the distance
Torque is directly proportional to -
1.mass, m , of object
2. distance, r, of the mass from the point about which we are finding the torque.
So if we increase or decrease them then the torque will also increase or decrease.
So if we increase the mass the torque will increase but since we have to maintain same torque therefore we have to decrease the distance of mass from the point about which we are finding torque.
Therefore the mass should be bring closer to the point about which we are finding torque.
Answer:
a) For P: 
For Q: 
b) For P:

for Q:

c) As the distance from the axis increases then speed increases too.
Explanation:
a) Assuming constant angular acceleration we can find the angular speed of the wheel dividing the angular displacement θ between time of rotation:

One rotation is 360 degrees or 2π radians, so θ=2π

Angular acceleration is at every point on the wheel, but speed (tangential speed) is different and depends on the position (R) respect the rotation axis, the equation that relates angular speed and speed is:

for P:

for Q:

b) Centripetal acceleration is:

for P:

for Q:

c) As seen on a) speed and distance from axis is
because ω is constant the if R increases then v increases too.
Explanation:
Osteopetrosis is a condition in which bones become weak and brittle. It causes the body to constantly absorb and replace bone tissue. With osteoporosis, new bone creation doesn't keep up with old bone removal.
While some don't experience symptoms, common symptoms can include bone fracture and a decrease in height.
Most treatments include supplements and diet modifications.
Answer:
First Condition of Equilibrium is that it must be experiencing no acceleration or the external forces acting on the body should be zero.
<span>The land between two normal faults moves upward to form a
Answer:D</span><span>
fault-block mountain.</span>