Answer:
(a) rate = 4.82 x 10⁻³s⁻¹ [N2O5]
(b) rate = 1.16 x 10⁻⁴ M/s
(c) rate = 2.32 x 10⁻⁴ M/s
(d) rate = 5.80 x 10⁻⁵ M/s
Explanation:
We are told the rate law is first order in N₂O₅, and its rate constant is 4.82 x 10⁻³s⁻¹ . This means the rate is proportional to the molar concentration of N₂O₅, so
(a) rate = k [N2O5] = 4.82 x 10⁻³s⁻¹ x [N2O5]
(b) rate = 4.82×10⁻³s⁻¹ x 0.0240 M = 1.16 x 10⁻⁴ M/s
(c) Since the reaction is first order if the concentration of N₂O₅ is double the rate will double too: 2 x 1.16 x 10⁻⁴ M/s = 2.32 x 10⁻⁴ M/s
(d) Again since the reaction is halved to 0.0120 M, the rate will be halved to
1.16 x 10⁻⁴ M/s / 2 = 5.80 x 10⁻⁵ M/s
125 mile *1gallon/35 mi = 135/35 = (27/7) gallon gasoline
27/7 gallon * 1 L/0.264 gallon = 14.6 L gasoline
14.6 L gasoline * 2.5kg CO2/1L gasoline= 36.5 kg CO2
36.5 kg CO2 * 1lb/0.454 kg = 80.4 lb
Answer: 80.4 lb CO2
Wave length measures the width of the wave
Answer: Benzene is less reactive than methylbenzoate and more reactive than Nitrobenzene
Explanation:
This is because the methyl group on the benzene ring is an electron donating group leading to the activation of the ring and subsequently leading to more canonical resonance structure at the intermediate stage of the reaction enhancing the faster reactivity
However for the Nitrobenzene the nitro group is an electron withdrawing group leading to a slower activation and less resonance canonical structure at the reaction intermediate leading to a slower reaction than the reaction of benzene without the nitro group