Answer:
<em>Nitrogen</em>
Explanation:
<u>Composition of the Atmosphere</u>
The atmosphere contains several gases, most of them in small amounts, which may include some pollutants and greenhouse gases.
The most abundant gas in the atmosphere is nitrogen (78%), followed by oxygen (21%) as the second. The inert gas called Argon is the third most abundant gas in the atmosphere (less than 1%).
Finally, the fourth most abundant gas in Earth's atmosphere is Carbon dioxide
Answer:
- Which of the following does not move as a transverse wave?
<em>B. sound waves</em>
because sound waves are longitudinal waves having compressions and rare factions.
Which of these effects describes the change in pitch we hear
moving motorbike goes past?
<em>D</em><em>.</em><em> </em><em>Doppler</em><em> </em><em>eff</em><em>ect</em>
Doppler effect is the phenomenon where there is apparent change in frequency (pitch) and wavelength of a wave due to relative motion of the sound source.
Which of the following does not make use of total internal reflection.
<em>B</em><em>.</em><em> </em><em>Endos</em><em>cop</em><em>e</em>
Endoscope doesn't use total internal reflection since no refraction takes place.
Answer:
A. Distance over which the force is applied
Explanation:
As we know that in pulley system the mass of the car is balanced by the tension in the string
so here we will have

so here in order to decrease the force needed to lift the car we have to increase Distance over which the force is applied
So here if we increase the distance over which force is applied then it will reduce the effort applied by us in this pulley system as the torque will be more if the distance is more.
Answer:
Densities increase down the group
MP and BP decrease down the group
Softness increased going down the group
Speed of reacting increases going down the group
Answer:
Acceleration = 10.06 m/s²
Explanation:
1 mile = 1.6093km
1609.3m = 1 mile
1 m =
mile
50.0 miles/hour =
m/s
= 22.35m/s
from equation
S = Ut + 1/2 at²
v = U + at
22.35 = 0 + a * 2.22
a = 22.35 ÷ 2.22
= 10.06 m/s²