Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:

Answer: C. 39 s
Explanation:
We know the constant speed is 0.22 m/s. We have to get to 8.5 m. We divide <u>8.5 m by 0.22</u> = 38.6. After we estimate, 6 is greater than 5, so 39 s.
Explanation:
Given that,
Wavelength = 6.0 nm
de Broglie wavelength = 6.0 nm
(a). We need to calculate the energy of photon
Using formula of energy



(b). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


(c). We need to calculate the energy of photon
Using formula of energy



(d). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


Hence, This is the required solution.
The formula is:
Work = Force · Displacement
F = m · g
F = 16 kg · 9.8 m/s² = 156.8 N
and we know that:
d = 0.8 m
W = 156.8 N · 0.8 m = 125.44 J
Answer:
W = 125.44 J.