Answer:
680 J
Explanation:
Mechanical energy = potential energy + kinetic energy
ME = PE + KE
ME = mgh + ½ mv²
ME = (77.1 kg) (9.8 m/s²) (0.90 m) + ½ (77.1 kg) (0 m/s)²
ME = 680 J
Answer: C.
Explanation:
For a parallel-plate capacitor where the distance between the plates is d.
The capacitance is:
C = e*A/d
You can see that the distance is in the denominator, then if we double the distance, the capacitance halves.
Now, the stored energy can be written as:
E = (1/2)*Q^2/C
Now you can see that in this case, the capacitance is in the denominator, then we can rewrite this as:
E = (1/2)*Q^2*d/(e*A)
e is a constant, A is the area of the plates, that is also constant, and Q is the charge, that can not change because the capacitor is disconnected.
Then we can define:
K = (1/2)*Q^2/(e*A)
And now we can write the energy as:
E = K*d
Then the energy is proportional to the distance between the plates, this means that if we double the distance, we also double the energy.
I’m pretty sure it’s true x
Answer: 576.48 N*m^2/C
Explanation: In order to calculate the electric flux through the any surface we have to take into account the scalar product between the electric field vector and the normal vector to the surface.
So we have:
ФE= E*A= 1.33 * 10^4*0.0518* cos (33.2°)= 576.48 N*m^2/C