Answer: Alternative optimal
Step-by-step explanation:
Alternative optimal solution means that
there are several optimal solutions that can be used to get identical objective function value.
Therefore, a scenario whereby the optimal objective function contour line coincides with one of the binding constraint lines on the boundary of the feasible region will lead to alternative optimal solution.
First factor (x square -36), the answer will be (x+6)(x-6).
Second, cancel the x .
6x/ (x+6)(x-6)
4x/(6)(-6)
4x/-36
First you graph it using a graphing calculator, you look at the table of values to find out one point in which y= 0. The first one that comes up is when x=1.
If you don't have a graphing calculator you can use trial and error by inputing some numbers into x until you get y= 0.
Once you have an x value which makes y=0, you can start factorizing it.
you divide 6x3 +4x2 -6x - 4 into (x-1) which is when y =0
to get 6x2+10x+4
This can be used to write the polynomial as (x-1)(6x2 +10x+4)
you then factorize the second bracket, 6x2 +10x+4.
you can take the 2 outside to give you 2(3x2 +5x+2)
you can factorize this to become 2(3x+2)(x+1)
Now you just substitute your factorized second bracket into your unfactorized second bracket to give you 2(3x+2)(x+1)(x-1).
From this you can deduce that k= 1
Answer:
And we can find this probability using the complement rule:
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the scores of a population, and for this case we know the distribution for X is given by:
Where
and
We are interested on this probability
And the best way to solve this problem is using the normal standard distribution and the z score given by:
If we apply this formula to our probability we got this:
And we can find this probability using the complement rule:
And in order to find these probabilities we can find tables for the normal standard distribution, excel or a calculator.