Answer:
x = 17.88[m]
Explanation:
We can find the components of the initial velocity:
![(v_{x})_{o} = 13.3*cos(41.5)=9.96[m/s]\\(v_{y})_{o} = 13.3*sin(41.5)=8.81[m/s]](https://tex.z-dn.net/?f=%28v_%7Bx%7D%29_%7Bo%7D%20%20%3D%2013.3%2Acos%2841.5%29%3D9.96%5Bm%2Fs%5D%5C%5C%28v_%7By%7D%29_%7Bo%7D%20%20%3D%2013.3%2Asin%2841.5%29%3D8.81%5Bm%2Fs%5D)
We have to remember that the acceleration of gravity will be worked with negative sign, since it acts in the opposite direction to the movement in direction and the projectile upwards.
g = - 9.81[m/s^2]
Now we must find the time it takes for the projectile to hit the ground, as the problem mentions that it does not impact on the board.
![y=y_{o} +(v_{y} )_{o} *t-0.5*g*(t)^{2} \\0=1.9+(8.81*t)-(4.905*t^{2})\\-1.9=8.81*t*(1-0.5567*t)\\t=0\\t=1.796[s]](https://tex.z-dn.net/?f=y%3Dy_%7Bo%7D%20%2B%28v_%7By%7D%20%29_%7Bo%7D%20%2At-0.5%2Ag%2A%28t%29%5E%7B2%7D%20%5C%5C0%3D1.9%2B%288.81%2At%29-%284.905%2At%5E%7B2%7D%29%5C%5C-1.9%3D8.81%2At%2A%281-0.5567%2At%29%5C%5Ct%3D0%5C%5Ct%3D1.796%5Bs%5D)
With this time we can calculate the horizontal distance:
![x=(v_{x})_{o} *t\\x=9.96*1.796\\x=17.88[m]](https://tex.z-dn.net/?f=x%3D%28v_%7Bx%7D%29_%7Bo%7D%20%2At%5C%5Cx%3D9.96%2A1.796%5C%5Cx%3D17.88%5Bm%5D)
Answer:
Energy is measured in JOULES.
Atoms and molecules are the fundamental building blocks of matter.
Explanation:
Matter is anything that has weight and occupies space. Locked within any given molecule or atom is some form of energy waiting to be activated. Energy can neither be created nor destroyed.
Answer:

Explanation:
Given



Required
Determine the impulse
The impulse is calculated as follows:

Substitute values for Force and Time


<em>Hence, the impulse experienced is 8.0Ns</em>
The principle of resistance training that suggests that muscles should be gradually required to do more than they are used to doing is D. OVERLOAD.
The principle of overload states that a greater than normal stress or load on the body is required for training adaptation to take place.
Overload refers to the amount of load or resistance, providing a greater stress, or load, on the body than it is normally accustomed to in order to increase fitness.
Option B is the correct answer that show how magnetic field lines should be drawn for the magnets shown in the figure.
<h3>
What is Magnetic Line of Force ?</h3>
The Magnetic Line of Force of a magnet is defined as the line along which a free N - pole would tend to move if placed in the field of a line such that the tangent to it at any point gives the direction of the field at that point.
When the two unlike poles are placed to each other, there will be attraction. And when the two like poles are placed to each other, there will be repulsion. The reason is that the line of force tend to move from the north pole to the south pole.
From the given diagram, the two magnets are of the same south pole. They are of like pole and there will be repulsion between the two magnets.
Therefore, Option B is the correct answer that show how magnetic field lines should be drawn for the magnets shown in the figure.
Learn more about Magnetic Field Lines here: brainly.com/question/17011493
#SPJ1