The answer is True.
Dictionary definition of <span>malleable. 
</span>
(of a metal or other material) able to be hammered or pressed permanently out of shape without breaking or cracking. 
        
             
        
        
        
Gravity largely depends on the comparison of two objects; it's why you have the equation F= (GMm)/r^2. On Earth, you have different altitudes that, with the formula, will give different results for gravity because the radius is different everywhere. This difference on calculations, however, are seen to be miniscule. We know gravity as 9.81 m/s^2 but it might be different by thousandths or hundreds of thousandths of a decimal.
        
                    
             
        
        
        
Answer : The correct option is (D).
Explanation :
Given that,
A track begins at 0 meters and has a total distance of 100 meters. Juliet starts at the 10-meter mark while practicing for a race.
We have to find her position after she runs 45 meters.
From the attached figure, 
Let A is the position of Juliet. O is the initial point such that OA = 10 m, AB = 45 m and OP = 100 m.
So, using simple mathematics, it is clear that the position of Juliet after running 45 meters will be 55 m. It is OB in the figure.
So, the correct option is (D) " 55 meters ".
 
        
                    
             
        
        
        
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant. 
<span> U = (1/2)kx^2 
</span><span> U = (1/2)(5.3)(3.62-2.60)^2 
</span> U = <span>
<span>2.75706 </span></span>J