1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arsen [322]
3 years ago
11

The fracture toughness of a stainless steel is 137 MPa*m12. What is the tensile impact load sustainable before fracture that a r

od can withstand with a pre-existing surface crack of 2 mm, given a square cross-section of 4.5 mm on each side, in kiloNewtons
Engineering
1 answer:
Charra [1.4K]3 years ago
7 0

Answer:

7.7 kN

Explanation:

The capacity of a material having a crack to withstand fracture is referred to as fracture toughness.

It can be expressed by using the formula:

K = \sigma Y \sqrt{\pi a}

where;

fracture toughness K = 137 MPam^{1/2}

geometry factor Y = 1

applied stress \sigma = ???

crack length a = 2mm = 0.002

∴

137 =\sigma \times 1  \sqrt{ \pi \times 0.002 }

137 =\sigma \times 0.07926

\dfrac{137}{0.07926} =\sigma

\sigma = 1728.489 MPa

Now, the tensile impact obtained is:

\sigma = \dfrac{P}{A}

P = A × σ

P = 1728.289 × 4.5

P = 7777.30 N

P = 7.7 kN

You might be interested in
Q1. (20 marks) Entropy Analysis of the heat engine: consider a 35% efficient heat engine operating between a large, high- temper
Anvisha [2.4K]

The rate of gain for the high reservoir would be 780 kj/s.

A. η = 35%

\frac{w}{Q1} = \frac{35}{100}

W = 1.2*\frac{35}{100}*1000kj/s

W = 420 kj/s

Q2 = Q1-W

= 1200-420

= 780 kJ/S

<h3>What is the workdone by this engine?</h3>

B. W = 420 kj/s

= 420x1000 w

= 4.2x10⁵W

The work done is 4.2x10⁵W

c. 780/308 - 1200/1000

= 2.532 - 1.2

= 1.332kj

The total enthropy gain is 1.332kj

D. Q1 = 1200

T1 = 1000

\frac{1200}{1000} =\frac{Q2}{308} \\\\Q2 = 369.6 KJ

<h3>Cournot efficiency = W/Q1</h3>

= 1200 - 369.6/1200

= 69.2 percent

change in s is zero for the reversible heat engine.

Read more on enthropy here: brainly.com/question/6364271

6 0
2 years ago
A plane wall of thickness 0.1 m and thermal conductivity 25 W/m·K having uniform volumetric heat generation of 0.3 MW/m3 is insu
Contact [7]

Answer:

T = 167 ° C

Explanation:

To solve the question we have the following known variables

Type of surface = plane wall ,

Thermal conductivity k = 25.0 W/m·K,  

Thickness L = 0.1 m,

Heat generation rate q' = 0.300 MW/m³,

Heat transfer coefficient hc = 400 W/m² ·K,

Ambient temperature T∞ = 32.0 °C

We are to determine the maximum temperature in the wall

Assumptions for the calculation are as follows

  • Negligible heat loss through the insulation
  • Steady state system
  • One dimensional conduction across the wall

Therefore by the one dimensional conduction equation we have

k\frac{d^{2}T }{dx^{2} } +q'_{G} = \rho c\frac{dT}{dt}

During steady state

\frac{dT}{dt} = 0 which gives k\frac{d^{2}T }{dx^{2} } +q'_{G} = 0

From which we have \frac{d^{2}T }{dx^{2} }  = -\frac{q'_{G}}{k}

Considering the boundary condition at x =0 where there is no heat loss

 \frac{dT}{dt} = 0 also at the other end of the plane wall we have

-k\frac{dT }{dx } = hc (T - T∞) at point x = L

Integrating the equation we have

\frac{dT }{dx }  = \frac{q'_{G}}{k} x+ C_{1} from which C₁ is evaluated from the first boundary condition thus

0 = \frac{q'_{G}}{k} (0)+ C_{1}  from which C₁ = 0

From the second integration we have

T  = -\frac{q'_{G}}{2k} x^{2} + C_{2}

From which we can solve for C₂ by substituting the T and the first derivative into the second boundary condition s follows

-k\frac{q'_{G}L}{k} = h_{c}( -\frac{q'_{G}L^{2} }{k}  + C_{2}-T∞) → C₂ = q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞

T(x) = \frac{q'_{G}}{2k} x^{2} + q'_{G}L(\frac{1}{h_{c} }+ \frac{L}{2k} } )+T∞ and T(x) = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} )-x^{2} )

∴ Tmax → when x = 0 = T∞ + \frac{q'_{G}}{2k} (L^{2}+(\frac{2kL}{h_{c} }} ))

Substituting the values we get

T = 167 ° C

4 0
3 years ago
I want to cancel my membership
Dennis_Churaev [7]
1. Go to settings 2. Press on your Apple ID 3. Press on subscriptions then turn them off.
5 0
2 years ago
What is the net force acting on a car cruising at a constant velocity of 70 km/h (a) on a level road and (b) on an uphill road?
ElenaW [278]

Answer:

a) zero b) zero

Explanation:

Newton's first law tells us that a body remains at rest or in uniform rectilinear motion, if a net force is not applied on it, that is, if there are no applied forces or If the sum of forces acting is zero. In this case there is a body that moves with uniform rectilinear motion which implies that there is no net force.

4 0
3 years ago
Which of the following tools might civil engineers use when designing roads in a recently constructed industrial park?
Dmitry [639]

Answer:D. Gunter's Chain

Explanation:I know this because a gunter's chain is used for plots of land to be accurately surveyed and plotted, for legal and commercial purposes.

6 0
3 years ago
Read 2 more answers
Other questions:
  • At an impaired driver checkpoint, the time required to conduct the impairment test varies (according to an exponential distribut
    6·1 answer
  • How can you evaluate whether the slope of the dependent variable with an independent variable is the same for each level of the
    13·1 answer
  • Air is to be heated steadily by an 8-kW electric resistance heater as it flows through an insulated duct. If the air enters at 5
    10·1 answer
  • Reusable refrigerant containers under high-pressure must be hydrostatically tested how often?
    10·1 answer
  • The price of a single item within a group of items is
    8·1 answer
  • The rainfall rate in a certain city is 20 inches per year over an infiltration area that covers 33000 acres. Twenty percent of t
    6·1 answer
  • The pressure intensity at a point in a fluid is equal in all directions a.true b.false​
    12·1 answer
  • Not sure which one....
    10·1 answer
  • What are the risks of biohacking? Do you think the risks of biohacking outweigh the advantages? Why or why not?
    5·1 answer
  • ABS system is necessary?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!