Answer:
Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.
Explanation:
As a PC board designer, I would sometimes spend a certain amount of time making traces have shorter routes, or fewer layer changes or bends. (I wanted to make the layout "pretty.") In some cases, these changes are superficial, affecting the appearance only. In some cases, they are functional, reducing crosstalk or emissions or susceptibility to interference.
I deal with a web site that seems to be changing all the time (Brainly). In many cases, the same information is rearranged on the page—a superficial change. In other cases, the information being displayed changes, or the way that certain information is accessed changes. These are functional changes. (Sometimes, they "enhance performance," and sometimes they don't, IMO.)
In short ...
<em>Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.</em>
Answer:
I do not know much but I looked and read, this I learned I hope this is good
The Maglev is a system of train transportation that uses two sets of magnets
working repel one another when matching poles face each other. Here, both magnetic attraction and repulsion are used to move the train car along the guideway.
Explanation:
Brainliest please
The correct answer is A
Faraday and Weber
:)
Answer:
<em><u>Hii</u></em><em><u> </u></em><em><u>Dear</u></em><em><u> </u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em><em><u> </u></em>
<em><u>How</u></em><em><u> are</u></em><em><u> you</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>I</u></em><em><u> </u></em><em><u>hop</u></em><em><u>e</u></em><em><u> </u></em><em><u>That</u></em><em><u> </u></em><em><u>you</u></em><em><u> are</u></em><em><u> </u></em><em><u>Fine</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Explanation:
<em><u>So</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>_</u></em><em><u>_</u></em><em><u>d</u></em><em><u>o</u></em><em><u>e</u></em><em><u>s</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em><em><u>_</u></em>
Answer:




Explanation:
From the question we are told that:
Dimension 
Thickness 
Normal tensile force on top side 
Normal tensile force on right side 
Elastic modulus, 
Generally the equation for Normal Strain X is mathematically given by

Therefore
For Top

Where



For Right side
Where
Area=L*B*T



Generally the equation for elongation is mathematically given by

For top


For Right

