Answer:
a
The rate of work developed is 
b
The rate of entropy produced within the turbine is   
 
Explanation:
      From  the question we are told 
           The rate at which heat is transferred is 
the negative sign because the heat is transferred from the turbine
           The specific heat capacity of air is 
           The inlet temperature is  
           The outlet temperature is 
            The pressure at the inlet of the turbine is 
           The pressure at the exist of the turbine is 
            The temperature at outer surface is 
          The individual gas constant of air  R with a constant value 
The general equation for the turbine operating at steady state is \
                
h is the enthalpy of the turbine and it is mathematically represented as          
         
 The above equation becomes 
              
               
Where 
 is the heat transfer from the turbine 
            
 is the work output from the turbine 
             
 is the mass flow rate of air 
              
 is the rate of work developed 
Substituting values 
               
                    
The general balance  equation for an entropy rate is represented mathematically as
                        
           =>          
     generally ![(s_1 -s_2) = \Delta s = c_p\ ln[\frac{T_2}{T_1} ] + R \ ln[\frac{v_2}{v_1} ]](https://tex.z-dn.net/?f=%28s_1%20-s_2%29%20%3D%20%5CDelta%20s%20%3D%20c_p%5C%20ln%5B%5Cfrac%7BT_2%7D%7BT_1%7D%20%5D%20%2B%20R%20%5C%20ln%5B%5Cfrac%7Bv_2%7D%7Bv_1%7D%20%5D)
substituting for 
 
                       ![\frac{\sigma}{\r m} = \frac{-\r Q}{\r m} * \frac{1}{T_s} +  c_p\ ln[\frac{T_2}{T_1} ] - R \ ln[\frac{p_2}{p_1} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csigma%7D%7B%5Cr%20m%7D%20%3D%20%5Cfrac%7B-%5Cr%20Q%7D%7B%5Cr%20m%7D%20%2A%20%5Cfrac%7B1%7D%7BT_s%7D%20%2B%20%20c_p%5C%20ln%5B%5Cfrac%7BT_2%7D%7BT_1%7D%20%5D%20-%20R%20%5C%20ln%5B%5Cfrac%7Bp_2%7D%7Bp_1%7D%20%5D)
                       Where 
 is the rate of entropy produced within the turbine 
  substituting values 
                 ![\frac{\sigma}{\r m} = - (-30) * \frac{1}{315} + 1.1 * ln\frac{670}{970} - 0.287 * ln [\frac{100kPa}{400kPa} ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csigma%7D%7B%5Cr%20m%7D%20%3D%20-%20%28-30%29%20%2A%20%5Cfrac%7B1%7D%7B315%7D%20%2B%201.1%20%2A%20ln%5Cfrac%7B670%7D%7B970%7D%20-%200.287%20%2A%20ln%20%5B%5Cfrac%7B100kPa%7D%7B400kPa%7D%20%5D)