Answer:
β =
= 0.7071 ≈ 1 ( damping condition )
closed-form expression for the response is attached below
Explanation:
Given : x + 2x + 2x = 0 for Xo = 0 mm and Vo = 1 mm/s
computing a solution :
M = 1,
c = 2,
k = 2,
Wn =
=
next we determine the damping condition using the damping formula
β =
= 0.7071 ≈ 1
from the condition above it can be said that the damping condition indicates underdamping
attached below is the closed form expression for the response
Answer:
The fluid level difference in the manometer arm = 22.56 ft.
Explanation:
Assumption: The fluid in the manometer is incompressible, that is, its density is constant.
The fluid level difference between the two arms of the manometer gives the gage pressure of the air in the tank.
And P(gage) = ρgh
ρ = density of the manometer fluid = 60 lbm/ft³
g = acceleration due to gravity = 32.2 ft/s²
ρg = 60 × 32.2 = 1932 lbm/ft²s²
ρg = 1932 lbm/ft²s² × 1lbf.s²/32.2lbm.ft = 60 lbf/ft³
h = fluid level difference between the two arms of the manometer = ?
P(gage) = 9.4 psig = 9.4 × 144 = 1353.6 lbf/ft²
1353.6 = ρg × h = 60 lbf/ft³ × h
h = 1353.6/60 = 22.56 ft
A diagrammatic representation of this setup is presented in the attached image.
Hope this helps!
Answer:
a. true
Explanation:
Firstly, we need to understand what takes places during the compression process in a quasi-equilibrium process. A quasi-equilibrium process is a process in during which the system remains very close to a state of equilibrium at all times. When a compression process is quasi-equilibrium, the work done during the compression is returned to the surroundings during expansion, no exchange of heat, and then the system and the surroundings return to their initial states. Thus a reversible process.
While for a non-quasi equilibrium process, it takes more work to move the piston against this high-pressure region.
Answer: its an Ignition coil
Answer:
2.5 is the required details