Answer:
(a)
(b)
Explanation:
(a)
Volume, V of unit cell
Number of unit cells, N
Where
is weight of material and
is density of material
(b)
Number of atoms in paper clip
This is a product of number of unit cells and number of atoms per cell
Since iron has 2 atoms per cell
Number of atoms of iron=
Answer:
battery life in year = 9 years and 48 days
Explanation:
given data
Battery Ampere-hours = 1.5
Pulse voltage = 2 V
Pulse width = 1.5 m sec
Pulse time period = 1 sec
Electrode heart resistance = 150 Ω
Current drain on the battery = 1.25 µA
to find out
battery life in years
solution
we get first here duty cycle that is express as
duty cycle =
...............1
duty cycle = 1.5 × 
and applied voltage will be
applied voltage = duty energy × voltage ...........2
applied voltage = 1.5 ×
× 2
applied voltage = 3 mV
so current will be
current =
................3
current = 
current = 20 µA
so net current will be
net current = 20 - 1.25
net current = 18.75 µA
so battery life will be
battery life = 
battery life = 80000 hours
battery life in year = 
battery life in year = 9.13 years
battery life in year = 9 years and 48 days
Answer:
a. The very first liquid process, when heated from 1250 degree Celsius, is expected to form at the temperature by which the vertical line crosses the phase boundary (a -(a + L)) which is about <em>1310 degree Celsius. </em>
b. The structure of that first liquid is identified by the intersection with ((a+ L)-L) phase boundary; <em>47wt %of Ni</em> is of a tie line formed across the (a+ L) phase area <em>at 1310 degrees.</em>
c. To find the alloy's full melting, it is determined that the intersection of the same vertical line at 60 wt percent Ni with (a -(a+L)) phase boundary is around <em>1350 degrees.</em>
c. The structure of the last remaining solid before full melting correlates to the intersection with the phase boundary (a -(a + L), of the tie line built at 1350 degrees across the (a + L) phase area, <em>being 72wt % of Ni.</em>
The mechanical energy of an object is a combination of its potential energy and its <em><u>kinetic</u></em><em><u> </u></em><em><u>energy</u></em><em><u>.</u></em>