Answer:
The PFR is more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Xₚբᵣ = 0.632
X꜀ₘբᵣ = 0.5
Xₚբᵣ > X꜀ₘբᵣ
Explanation:
From the reaction rate coefficient, it is evident the reaction is a first order reaction
Performance equation for a CMFR for a first order reaction is
kτ = (X)/(1 - X)
k = reaction rate constant = 0.05 /day
τ = Time constant or holding time = V/F₀
V = volume of reactor = 280 m³
F₀ = Flowrate into the reactor = 14 m³/day
X = conversion
k(V/F₀) = (X)/(1 - X)
0.05 × (280/14) = X/(1 - X)
1 = X/(1 - X)
X = 1 - X
2X = 1
X = 1/2 = 0.5
For the PFR
Performance equation for a first order reaction is given by
kτ = In [1/(1 - X)]
The parameters are the same as above,
0.05 × (280/14) = In (1/(1-X)
1 = In (1/(1-X))
e = 1/(1 - X)
2.718 = 1/(1 - X)
1 - X = 1/2.718
1 - X = 0.3679
X = 1 - 0.3679
X = 0.632
The PFR is evidently more efficient in the removal of the reactive compound as it has the higher conversion ratio.
Answer:
See explaination and attachment.
Explanation:
Iteration method is a repetitive method applied until the desired result is achieved.
Let the given equation be f(x) = 0 and the value of x to be determined. By using the Iteration method you can find the roots of the equation. To find the root of the equation first we have to write equation like below
x = pi(x)
Let x=x0 be an initial approximation of the required root α then the first approximation x1 is given by x1 = pi(x0).
Similarly for second, thrid and so on. approximation
x2 = pi(x1)
x3 = pi(x2)
x4 = pi(x3)
xn = pi(xn-1).
please go to attachment for the step by step solution.