Answer:
The correct answer is true.
Answer:
T = reading (cm) time base (s / cm)
f = 1 / T
Explanation:
An oscilloscope is a piece of equipment that allows you to visualize and measure a wave that reaches you, in the case of having a sonometer this transforms the sound wave into an electrical signal to be introduced through one of the voltage channels of the equipment, on the screen we will see the oscillating alternating signal, if it is fixed we can make the reading, if it is moving the time base and the trigger must be adjusted to stop it.
In the oscilloscope we can read the period of the signal, this is the time it takes for the signal to repeat itself with this value, we can calculate the frequency with the formula, for the reading of the period the distance is measured on the labeled screen and multiplied by the time base
T = reading (cm) time base (s / cm)
f = 1 / T
(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

and so, substituting:

We find

(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by

So, the ratio between the two kinetic energies is

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

For satellite A, we have

For satellite B, we have

So, satellite B has the greater total energy (since the energy is negative).
(d) 
The difference between the energy of the two satellites is:

Answer:
m = B²qR² / 2 V
Explanation:
If v be the velocity after acceleration under potential difference of V
kinetic energy = loss of electric potential energy
1/2 m v² = Vq ,
v² = 2 Vq / m ----------------------- ( 1 )
In magnetic field , charged particle comes in circular motion in which magnetic force provides centripetal force
magnetic force = centripetal force
Bqv = mv² / R
v = BqR / m
v² = B²q²R² / m² ------------------------- (2)
from (1) and (2)
B²q²R² / m² = 2 Vq / m
m = B²q²R² / 2 Vq
m = B²qR² / 2 V
The emf is induced in the wire will be 1.56 ×10 ⁻³ V. The induced emf is the product of the magnetic field,velocity and length of the wire.
<h3>What is induced emf?</h3>
Emf is the production of a potential difference in a coil as a result of changes in the magnetic flux passing through it.
When the flux coupling with a conductor or coil changes, electromotive Force, or EMF, is said to be induced.
The given data in the problem is;
B is the magnitude of the magnetic field,= 5.0 ×10⁻⁵ T
V(velocity)=125 M/SEC
L(length)=25 cm=0.25 m
The maximum emf is found as;
E=VBLsin90°
E=125 × 5.0 × 10⁻⁵ ×0.25
E=1.56 ×10 ⁻³ V
Hence, the emf is induced in the wire will be 1.56 ×10 ⁻³ V
To learn more about the induced emf, refer to the link;
brainly.com/question/16764848
#SPJ1