<span>10 times as much. Since F=m*a, and a is constant, the only thing that affects force is the mass.
In response to the below answer, the acceleration due to gravity does not change. The force due to gravity definitely DOES change depending on the mass of the object. Since the force is what the problem asks for, the answer is 10</span>
Answer:
v = 0.489 m/s
Explanation:
It is given that,
Mass of a box, m = 1.5 kg
The compression in the spring, x = 6.5 cm = 0.065 m
Let the spring constant of the spring is 85 N/m
We need to find the velocity of the box (v) when it hit the spring. It is based on the conservation of energy. The kinetic energy of spring before collision is equal to the spring energy after compression i.e.
So, the speed of the box is 0.489 m/s.
From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.