Answer: If the intermolecular forces are weak, then molecules can break out of the solid or liquid more easily into the gas phase. Consider two different liquids, one polar one not, contained in two separate boxes. We would expect the molecules to more easily break away from the bulk for the non-polar case. If the molecules are held tightly together by strong intermolecular forces, few of the molecules will have enough kinetic energy to separate from each other. They will stay in the liquid phase, and the rate of evaporation will be low. ... They will escape from the liquid phase, and the rate of evaporation will be high. To make water evaporate, energy has to be added. The water molecules in the water absorb that energy individually. Due to this absorption of energy the hydrogen bonds connecting water molecules to one another will break.
Hope this helps..... Stay safe and have a Merry Christmas!!!!!!!! :D
Answer: a. 0.26mol
b. 0.000479mol
c. 1.12mol
Explanation: Please see attachment for explanation
One electron in an atom experiences the entire positive charge of the nucleus. Coulomb's law can be used in this situation to determine the effective nuclear charge.
In contrast, the outside electrons in an atom with many electrons are drawn to the positive nucleus and repelled by the negatively charged electrons at the same time. The force between two stationary, electrically charged particles can be measured using Coulomb's law inverse-square law, also known as Coulomb's law. Conventionally, the electric force between two charged objects at rest is referred to as the Coulomb force or electrostatic force.
The electron is a subatomic particle with the symbol e or with an electric charge of one elementarily negative charge. The lepton particle family's first generation includes electrons.
Learn more about Coulomb's law here
brainly.com/question/506926
#SPJ4
Answer:
See the images below
Step-by-step explanation:
To draw a dot diagram of an atom, you locate the element in the Periodic Table and figure out how many valence electrons it has. Then you distribute the electrons as dots around the atom,
a. Silicon.
Si is in Group 14, so it has four valence electrons.
b. Xenon
Xenon is in Group 18, so it has eight valence electrons. We group them as four pairs around the xenon atom.
c. Calcium
Calcium is in Group 2, so it has two valence electrons. They are in a single subshell, so we write them as a pair on the calcium atom.
d. Water
Oxygen is in Group 16, so it has six valence electrons. The hydrogen atoms each contribute one electron, so there are eight valence electrons.
Chemists often use a dash to represent a pair of electrons in a bond.
Answer:
because both liquid are made from different substances.
Explanation: