Answer:
Based on compounds given, NO reaction occurs
Explanation
The compounds should exchange ions to generate a driving force that pulls the reaction to completion. => Example ...
The Molecular Equation is ...
NH₄Cl(aq) + AgNO₃(aq) => NH₄NO₃(aq) + AgCl(s)
Silver chloride forms in this reaction as a solid precipitate because of its low solubility and is the 'Driving Force' of the reaction. Driving Force is a more stable compound than any on the reactant side and when formed leaves the reaction system as a solid ppt, liquid weak electrolyte (i.e., weak acid or weak base) or a gas decomposition product of a weak electrolyte.
The Ionic Equation is ...
NH₄⁺(aq) + Cl⁻(aq) + Ag⁺(aq) + NO₃⁻(aq) => NH₄⁺(aq) + NO₃⁻(aq) + AgCl(s)
This shows all ions from reaction plus the Driving Force of the reaction.
The Net Ionic Equation is ...
Ag⁺(aq) + Cl⁻(aq) => AgCl(s)
The Net Ionic Equation shows only those ions undergoing reaction. The NH₄⁺ and NO₃⁻ ions are 'Spectator Ions' and do not react.
Attached is a reference sheet for determining the Driving Force of a Metathesis Double Replacement Reaction. Suggest reviewing acid-base theories and the products of decomposition type reactions.
Answer:
Concentration of chloride ions = 0.584M
Explanation:
The step by step calculations is shown as attached below.
Answer:
The constant density decreases
Explanation:
As the temperature of a solvent increases, the solubility of any gas dissolved in that solvent decreases.
For example:
when the temperature of a river, lake or stream is raised high , due to discharge of hot water from some industrial process the solubility of the oxygen in the water is decreased .The fish and the other organisms that live in the water bodies such as rivers, ponds, lakes etc can survive only in the presence of oxygen and decrease in the concentration of the water due to increased temperature can lead to the death of the fish and this may in turn damage the ecosystem.
In the above example, water is considered as the solvent and the oxygen is considered as the solute. When the temperature of the solvent that is water increases, the solubility of the gas that is oxygen in the solvent decreases.
Therefore the answer is decreases
Answer : The amount of heat evolved by a reaction is, 4.81 kJ
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m_2\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm_2%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the water
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water = 254 g
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(783J/^oC\times -2.28^oC)+(254g\times 4.184J/g^oC\times -2.28^oC)]](https://tex.z-dn.net/?f=q%3D%5B%28783J%2F%5EoC%5Ctimes%20-2.28%5EoC%29%2B%28254g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20-2.28%5EoC%29%5D)

Therefore, the amount of heat evolved by a reaction is, 4.81 kJ
B. The unknown solution had the lower concentration.
Explanation:
Osmosis is a phenomenon in which the molecules of the solvent has a tendency to move through a membrane which is semipermeable from lower concentrated side to the higher concentration side, so that the concentrations on both sides of the membrane must be equal.
So the unknown solution may have lesser concentration than the isotonic solution so that molecules of that solution move from less concentrated side to the more concentrated side, so its level drops.