M = 30 g = 0.03 kg, the mass of the bullet
v = 500 m/s, the velocity of the bullet
By definition, the KE (kinetic energy) of the bullet is
KE = (1/2)*m*v²
= 0.5*(0.03 kg)*(500 m/s)² = 3750 J
Because the bullet comes to rest, the change in mechanical energy is 3750 J.
The work done by the wall to stop the bullet in 12 cm is
W = (1/2)*(F N)*(0.12 m) = 0.06F J
If energy losses in the form of heat or sound waves are ignored, then
W = KE.
That is,
0.06F = 3750
F = 62500 N = 62.5 kN
Answer:
(a) 3750 J
(b) 62.5 kN
Answer: 27.21 V
Explanation:
The <u>electric potential</u>
due to a point charge is expressed as:

Where:
is the <u>electric constant</u>
is the <u>electric charge of the hydrogen nucleus</u>, which is positive
is the <u>distance</u>
Rewritting the equation with the known values:

Finally:
Explanation:
It is given that,
Mass of Millersburg Ferry, m = 13000 kg
Velocity, v = 11 m/s
Applied force, F = 10⁶ N
Time period, t = 20 seconds
(a) Impulse is given by the product of force and time taken i.e.



(b) Impulse is also given by the change in momentum i.e.





(c) For new velocity,



Hence, this is the required solution.
Answer:
thick wire and cold temperatures
The charge of the object must be 
Answer: Option C
<u>Explanation:</u>
Suppose an electric charge can be represented by the symbol Q. This electric charge generates an electric field; Because Q is the source of the electric field, we call this as source charge. The electric field strength of the source charge can be measured with any other charge anywhere in the area. The test charges used to test the field strength.
Its quantity indicated by the symbol q. In the electric field, q exerts an electric, either attractive or repulsive force. As usual, this force is indicated by the symbol F. The electric field’s magnitude is simply defined as the force per charge (q) on Q.

Here, given E = 4500 N/C and F = 0.05 N.
We need to find charge of the object (q)
By substituting the given values, we get
